BurnInTransform
- class torchrl.envs.transforms.BurnInTransform(modules: Sequence[TensorDictModuleBase], burn_in: int, out_keys: Sequence[NestedKey] | None = None)[source]
Transform to partially burn-in data sequences.
This transform is useful to obtain up-to-date recurrent states when they are not available. It burns-in a number of steps along the time dimension from sampled sequential data slices and returns the remaining data sequence with the burnt-in data in its initial time step. This transform is intended to be used as a replay buffer transform, not as an environment transform.
- Parameters:
modules (sequence of TensorDictModule) – A list of modules used to burn-in data sequences.
burn_in (int) – The number of time steps to burn in.
out_keys (sequence of NestedKey, optional) – destination keys. Defaults to
` (all the modules out_keys that point to the next time step (e.g. "hidden" if) –
("next" –
module). ("hidden")` is part of the out_keys of a) –
Note
This transform expects as inputs TensorDicts with its last dimension being the time dimension. It also assumes that all provided modules can process sequential data.
Examples
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.envs.transforms import BurnInTransform >>> from torchrl.modules import GRUModule >>> gru_module = GRUModule( ... input_size=10, ... hidden_size=10, ... in_keys=["observation", "hidden"], ... out_keys=["intermediate", ("next", "hidden")], ... default_recurrent_mode=True, ... ) >>> burn_in_transform = BurnInTransform( ... modules=[gru_module], ... burn_in=5, ... ) >>> td = TensorDict({ ... "observation": torch.randn(2, 10, 10), ... "hidden": torch.randn(2, 10, gru_module.gru.num_layers, 10), ... "is_init": torch.zeros(2, 10, 1), ... }, batch_size=[2, 10]) >>> td = burn_in_transform(td) >>> td.shape torch.Size([2, 5]) >>> td.get("hidden").abs().sum() tensor(86.3008)
>>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> buffer = TensorDictReplayBuffer( ... storage=LazyMemmapStorage(2), ... batch_size=1, ... ) >>> buffer.append_transform(burn_in_transform) >>> td = TensorDict({ ... "observation": torch.randn(2, 10, 10), ... "hidden": torch.randn(2, 10, gru_module.gru.num_layers, 10), ... "is_init": torch.zeros(2, 10, 1), ... }, batch_size=[2, 10]) >>> buffer.extend(td) >>> td = buffer.sample(1) >>> td.shape torch.Size([1, 5]) >>> td.get("hidden").abs().sum() tensor(37.0344)
- forward(tensordict: TensorDictBase) TensorDictBase [source]
Reads the input tensordict, and for the selected keys, applies the transform.
By default, this method:
calls directly
_apply_transform()
.does not call
_step()
or_call()
.
This method is not called within env.step at any point. However, is is called within
sample()
.Note
forward
also works with regular keyword arguments usingdispatch
to cast the args names to the keys.Examples
>>> class TransformThatMeasuresBytes(Transform): ... '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.''' ... def __init__(self): ... super().__init__(in_keys=[], out_keys=["bytes"]) ... ... def forward(self, tensordict: TensorDictBase) -> TensorDictBase: ... bytes_in_td = tensordict.bytes() ... tensordict["bytes"] = bytes ... return tensordict >>> t = TransformThatMeasuresBytes() >>> env = env.append_transform(t) # works within envs >>> t(TensorDict(a=0)) # Works offline too.