Source code for torchrl.record.recorder
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import importlib.util
import math
from copy import copy
from typing import Callable, List, Optional, Sequence, Union
import numpy as np
import torch
from tensordict import NonTensorData, TensorDictBase
from tensordict.utils import NestedKey
from torchrl._utils import _can_be_pickled
from torchrl.data import TensorSpec
from torchrl.data.tensor_specs import NonTensor, Unbounded
from torchrl.data.utils import CloudpickleWrapper
from torchrl.envs import EnvBase
from torchrl.envs.transforms import ObservationTransform, Transform
from torchrl.record.loggers import Logger
_has_tv = importlib.util.find_spec("torchvision", None) is not None
[docs]class VideoRecorder(ObservationTransform):
"""Video Recorder transform.
Will record a series of observations from an environment and write them
to a Logger object when needed.
Args:
logger (Logger): a Logger instance where the video
should be written. To save the video under a memmap tensor or an mp4 file, use
the :class:`~torchrl.record.loggers.CSVLogger` class.
tag (str): the video tag in the logger.
in_keys (Sequence of NestedKey, optional): keys to be read to produce the video.
Default is :obj:`"pixels"`.
skip (int): frame interval in the output video.
Default is ``2`` if the transform has a parent environment, and ``1`` if not.
center_crop (int, optional): value of square center crop.
make_grid (bool, optional): if ``True``, a grid is created assuming that a
tensor of shape [B x W x H x 3] is provided, with B being the batch
size. Default is ``True`` if the transform has a parent environment, and ``False``
if not.
out_keys (sequence of NestedKey, optional): destination keys. Defaults
to ``in_keys`` if not provided.
Examples:
The following example shows how to save a rollout under a video. First a few imports:
>>> from torchrl.record import VideoRecorder
>>> from torchrl.record.loggers.csv import CSVLogger
>>> from torchrl.envs import TransformedEnv, DMControlEnv
The video format is chosen in the logger. Wandb and tensorboard will take care of that
on their own, CSV accepts various video formats.
>>> logger = CSVLogger(exp_name="cheetah", log_dir="cheetah_videos", video_format="mp4")
Some envs (eg, Atari games) natively return images, some require the user to ask for them.
Check :class:`~torchrl.envs.GymEnv` or :class:`~torchrl.envs.DMControlEnv` to see how to render images
in these contexts.
>>> base_env = DMControlEnv("cheetah", "run", from_pixels=True)
>>> env = TransformedEnv(base_env, VideoRecorder(logger=logger, tag="run_video"))
>>> env.rollout(100)
All transforms have a dump function, mostly a no-op except for ``VideoRecorder``, and :class:`~torchrl.envs.transforms.Compose`
which will dispatch the `dumps` to all its members.
>>> env.transform.dump()
The transform can also be used within a dataset to save the video collected. Unlike in the environment case,
images will come in a batch. The ``skip`` argument will enable to save the images only at specific intervals.
>>> from torchrl.data.datasets import OpenXExperienceReplay
>>> from torchrl.envs import Compose
>>> from torchrl.record import VideoRecorder, CSVLogger
>>> # Create a logger that saves videos as mp4
>>> logger = CSVLogger("./dump", video_format="mp4")
>>> # We use the VideoRecorder transform to save register the images coming from the batch.
>>> t = VideoRecorder(logger=logger, tag="pixels", in_keys=[("next", "observation", "image")])
>>> # Each batch of data will have 10 consecutive videos of 200 frames each (maximum, since strict_length=False)
>>> dataset = OpenXExperienceReplay("cmu_stretch", batch_size=2000, slice_len=200,
... download=True, strict_length=False,
... transform=t)
>>> # Get a batch of data and visualize it
>>> for data in dataset:
... t.dump()
... break
Our video is available under ``./cheetah_videos/cheetah/videos/run_video_0.mp4``!
"""
def __init__(
self,
logger: Logger,
tag: str,
in_keys: Optional[Sequence[NestedKey]] = None,
skip: int | None = None,
center_crop: Optional[int] = None,
make_grid: bool | None = None,
out_keys: Optional[Sequence[NestedKey]] = None,
**kwargs,
) -> None:
if in_keys is None:
in_keys = ["pixels"]
if out_keys is None:
out_keys = copy(in_keys)
super().__init__(in_keys=in_keys, out_keys=out_keys)
video_kwargs = {"fps": 6}
video_kwargs.update(kwargs)
self.video_kwargs = video_kwargs
self.iter = 0
self.skip = skip
self.logger = logger
self.tag = tag
self.count = 0
self.center_crop = center_crop
self.make_grid = make_grid
if center_crop and not _has_tv:
raise ImportError(
"Could not load center_crop from torchvision. Make sure torchvision is installed."
)
self.obs = []
@property
def make_grid(self):
make_grid = self._make_grid
if make_grid is None:
if self.parent is not None:
self._make_grid = True
return True
self._make_grid = False
return False
return make_grid
@make_grid.setter
def make_grid(self, value):
self._make_grid = value
@property
def skip(self):
skip = self._skip
if skip is None:
if self.parent is not None:
self._skip = 2
return 2
self._skip = 1
return 1
return skip
@skip.setter
def skip(self, value):
self._skip = value
def _apply_transform(self, observation: torch.Tensor) -> torch.Tensor:
if isinstance(observation, NonTensorData):
observation_trsf = torch.tensor(observation.data)
else:
observation_trsf = observation
self.count += 1
if self.count % self.skip == 0:
if (
observation_trsf.ndim >= 3
and observation_trsf.shape[-3] == 3
and observation_trsf.shape[-2] > 3
and observation_trsf.shape[-1] > 3
):
# permute the channels to the last dim
observation_trsf = observation_trsf.permute(
*range(observation_trsf.ndim - 3), -2, -1, -3
)
if not (
observation_trsf.shape[-1] == 3 or observation_trsf.ndimension() == 2
):
raise RuntimeError(
f"Invalid observation shape, got: {observation.shape}"
)
observation_trsf = observation_trsf.clone()
if observation.ndimension() == 2:
observation_trsf = observation.unsqueeze(-3)
else:
if observation_trsf.shape[-1] != 3:
raise RuntimeError(
"observation_trsf is expected to have 3 dimensions, "
f"got {observation_trsf.ndimension()} instead"
)
trailing_dim = range(observation_trsf.ndimension() - 3)
observation_trsf = observation_trsf.permute(*trailing_dim, -1, -3, -2)
if self.center_crop:
if not _has_tv:
raise ImportError(
"Could not import torchvision, `center_crop` not available. "
"Make sure torchvision is installed in your environment."
)
from torchvision.transforms.functional import (
center_crop as center_crop_fn,
)
observation_trsf = center_crop_fn(
observation_trsf, [self.center_crop, self.center_crop]
)
if self.make_grid and observation_trsf.ndimension() >= 4:
if not _has_tv:
raise ImportError(
"Could not import torchvision, `make_grid` not available. "
"Make sure torchvision is installed in your environment."
)
from torchvision.utils import make_grid
obs_flat = observation_trsf.flatten(0, -4)
observation_trsf = make_grid(
obs_flat, nrow=int(math.ceil(math.sqrt(obs_flat.shape[0])))
)
self.obs.append(observation_trsf.to("cpu", torch.uint8))
elif observation_trsf.ndimension() >= 4:
self.obs.extend(observation_trsf.to("cpu", torch.uint8).flatten(0, -4))
else:
self.obs.append(observation_trsf.to("cpu", torch.uint8))
return observation
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
return self._call(tensordict)
def dump(self, suffix: Optional[str] = None) -> None:
"""Writes the video to the ``self.logger`` attribute.
Calling ``dump`` when no image has been stored in a no-op.
Args:
suffix (str, optional): a suffix for the video to be recorded
"""
if self.obs:
obs = torch.stack(self.obs, 0).unsqueeze(0).cpu()
else:
obs = None
self.obs = []
if obs is not None:
if suffix is None:
tag = self.tag
else:
tag = "_".join([self.tag, suffix])
if self.logger is not None:
self.logger.log_video(
name=tag,
video=obs,
step=self.iter,
**self.video_kwargs,
)
self.iter += 1
self.count = 0
self.obs = []
def _reset(
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
) -> TensorDictBase:
self._call(tensordict_reset)
return tensordict_reset
[docs]class TensorDictRecorder(Transform):
"""TensorDict recorder.
When the 'dump' method is called, this class will save a stack of the tensordict resulting from :obj:`env.step(td)` in a
file with a prefix defined by the out_file_base argument.
Args:
out_file_base (str): a string defining the prefix of the file where the tensordict will be written.
skip_reset (bool): if ``True``, the first TensorDict of the list will be discarded (usually the tensordict
resulting from the call to :obj:`env.reset()`)
default: True
skip (int): frame interval for the saved tensordict.
default: 4
"""
def __init__(
self,
out_file_base: str,
skip_reset: bool = True,
skip: int = 4,
in_keys: Optional[Sequence[str]] = None,
) -> None:
if in_keys is None:
in_keys = []
super().__init__(in_keys=in_keys)
self.iter = 0
self.out_file_base = out_file_base
self.td = []
self.skip_reset = skip_reset
self.skip = skip
self.count = 0
def _call(self, tensordict: TensorDictBase) -> TensorDictBase:
self.count += 1
if self.count % self.skip == 0:
_td = tensordict
if self.in_keys:
_td = tensordict.select(*self.in_keys).to_tensordict()
self.td.append(_td)
return tensordict
def dump(self, suffix: Optional[str] = None) -> None:
if suffix is None:
tag = self.tag
else:
tag = "_".join([self.tag, suffix])
td = self.td
if self.skip_reset:
td = td[1:]
torch.save(
torch.stack(td, 0).contiguous(),
f"{tag}_tensordict.t",
)
self.iter += 1
self.count = 0
del self.td
self.td = []
def _reset(
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
) -> TensorDictBase:
self._call(tensordict_reset)
return tensordict_reset
[docs]class PixelRenderTransform(Transform):
"""A transform to call render on the parent environment and register the pixel observation in the tensordict.
This transform offers an alternative to the ``from_pixels`` syntatic sugar when instantiating an environment
that offers rendering is expensive, or when ``from_pixels`` is not implemented.
It can be used within a single environment or over batched environments alike.
Args:
out_keys (List[NestedKey] or Nested): List of keys where to register the pixel observations.
preproc (Callable, optional): a preproc function. Can be used to reshape the observation, or apply
any other transformation that makes it possible to register it in the output data.
as_non_tensor (bool, optional): if ``True``, the data will be written as a :class:`~tensordict.NonTensorData`
thereby relaxing the shape requirements. If not provided, it will be inferred automatically from the
input data type and shape.
render_method (str, optional): the name of the render method. Defaults to ``"render"``.
pass_tensordict (bool, optional): if ``True``, the input tensordict will be passed to the
render method. This enables rendering for stateless environments. Defaults to ``False``.
**kwargs: additional keyword arguments to pass to the render function (e.g. ``mode="rgb_array"``).
Examples:
>>> from torchrl.envs import GymEnv, check_env_specs, ParallelEnv, EnvCreator
>>> from torchrl.record.loggers import CSVLogger
>>> from torchrl.record.recorder import PixelRenderTransform, VideoRecorder
>>>
>>> def make_env():
>>> env = GymEnv("CartPole-v1", render_mode="rgb_array")
>>> env = env.append_transform(PixelRenderTransform())
>>> return env
>>>
>>> if __name__ == "__main__":
... logger = CSVLogger("dummy", video_format="mp4")
...
... env = ParallelEnv(4, EnvCreator(make_env))
...
... env = env.append_transform(VideoRecorder(logger=logger, tag="pixels_record"))
... env.rollout(3)
...
... check_env_specs(env)
...
... r = env.rollout(30)
... print(env)
... env.transform.dump()
... env.close()
This transform can also be used whenever a batched environment ``render()`` returns a single image:
Examples:
>>> from torchrl.envs import check_env_specs
>>> from torchrl.envs.libs.vmas import VmasEnv
>>> from torchrl.record.loggers import CSVLogger
>>> from torchrl.record.recorder import PixelRenderTransform, VideoRecorder
>>>
>>> env = VmasEnv(
... scenario="flocking",
... num_envs=32,
... continuous_actions=True,
... max_steps=200,
... device="cpu",
... seed=None,
... # Scenario kwargs
... n_agents=5,
... )
>>>
>>> logger = CSVLogger("dummy", video_format="mp4")
>>>
>>> env = env.append_transform(PixelRenderTransform(mode="rgb_array", preproc=lambda x: x.copy()))
>>> env = env.append_transform(VideoRecorder(logger=logger, tag="pixels_record"))
>>>
>>> check_env_specs(env)
>>>
>>> r = env.rollout(30)
>>> env.transform[-1].dump()
The transform can be disabled using the :meth:`~torchrl.record.PixelRenderTransform.switch` method, which will
turn the rendering on if it's off or off if it's on (an argument can also be passed to control this behavior).
Since transforms are :class:`~torch.nn.Module` instances, :meth:`~torch.nn.Module.apply` can be used to control
this behavior:
>>> def switch(module):
... if isinstance(module, PixelRenderTransform):
... module.switch()
>>> env.apply(switch)
"""
def __init__(
self,
out_keys: List[NestedKey] = None,
preproc: Callable[
[np.ndarray | torch.Tensor], np.ndarray | torch.Tensor
] = None,
as_non_tensor: bool = None,
render_method: str = "render",
pass_tensordict: bool = False,
**kwargs,
) -> None:
if out_keys is None:
out_keys = ["pixels"]
elif isinstance(out_keys, (str, tuple)):
out_keys = [out_keys]
if len(out_keys) != 1:
raise RuntimeError(
f"Expected one and only one out_key, got out_keys={out_keys}"
)
if preproc is not None and not _can_be_pickled(preproc):
preproc = CloudpickleWrapper(preproc)
self.preproc = preproc
self.as_non_tensor = as_non_tensor
self.kwargs = kwargs
self.render_method = render_method
self._enabled = True
self.pass_tensordict = pass_tensordict
super().__init__(in_keys=[], out_keys=out_keys)
def _reset(
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
) -> TensorDictBase:
return self._call(tensordict_reset)
def _call(self, tensordict: TensorDictBase) -> TensorDictBase:
if not self._enabled:
return tensordict
method = getattr(self.parent, self.render_method)
if not self.pass_tensordict:
array = method(**self.kwargs)
else:
array = method(tensordict, **self.kwargs)
if self.preproc:
array = self.preproc(array)
if self.as_non_tensor is None:
if isinstance(array, list):
if isinstance(array[0], np.ndarray):
array = np.asarray(array)
else:
array = torch.as_tensor(array)
if (
array.ndim == 3
and array.shape[-1] == 3
and self.parent.batch_size != ()
):
self.as_non_tensor = True
else:
self.as_non_tensor = False
if not self.as_non_tensor:
try:
tensordict.set(self.out_keys[0], array)
except Exception:
raise RuntimeError(
f"An exception was raised while writing the rendered array "
f"(shape={getattr(array, 'shape', None)}, dtype={getattr(array, 'dtype', None)}) in the tensordict with shape {tensordict.shape}. "
f"Consider adapting your preproc function in {type(self).__name__}. You can also "
f"pass keyword arguments to the render function of the parent environment, or save "
f"this observation as a non-tensor data with as_non_tensor=True."
)
else:
tensordict.set_non_tensor(self.out_keys[0], array)
return tensordict
def transform_observation_spec(self, observation_spec: TensorSpec) -> TensorSpec:
# Adds the pixel observation spec by calling render on the parent env
switch = False
if not self.enabled:
switch = True
self.switch()
parent = self.parent
td_in = parent.reset()
self._call(td_in)
obs = td_in.get(self.out_keys[0])
if isinstance(obs, NonTensorData):
spec = NonTensor(device=obs.device, dtype=obs.dtype, shape=obs.shape)
else:
spec = Unbounded(device=obs.device, dtype=obs.dtype, shape=obs.shape)
observation_spec[self.out_keys[0]] = spec
if switch:
self.switch()
return observation_spec
def switch(self, mode: str | bool = None):
"""Sets the transform on or off.
Args:
mode (str or bool, optional): if provided, sets the switch to the desired mode.
``"on"``, ``"off"``, ``True`` and ``False`` are accepted values.
By default, ``switch`` sets the mode to the opposite of the current one.
"""
if mode is None:
mode = not self._enabled
if not isinstance(mode, bool):
if mode not in ("on", "off"):
raise ValueError("mode must be either 'on' or 'off', or a boolean.")
mode = mode == "on"
self._enabled = mode
@property
def enabled(self) -> bool:
"""Whether the recorder is enabled."""
return self._enabled
def set_container(self, container: Union[Transform, EnvBase]) -> None:
out = super().set_container(container)
if isinstance(self.parent, EnvBase):
# Start the env if needed
method = getattr(self.parent, self.render_method, None)
if method is None or not callable(method):
raise ValueError(
f"The render method must exist and be a callable. Got render={method}."
)
return out