Shortcuts

Source code for torchrl.objectives.td3

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations

from dataclasses import dataclass
from typing import List, Optional, Tuple

import torch

from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import dispatch, TensorDictModule
from tensordict.utils import NestedKey
from torchrl.data.tensor_specs import Bounded, Composite, TensorSpec

from torchrl.envs.utils import step_mdp
from torchrl.objectives.common import LossModule

from torchrl.objectives.utils import (
    _cache_values,
    _GAMMA_LMBDA_DEPREC_ERROR,
    _reduce,
    _vmap_func,
    default_value_kwargs,
    distance_loss,
    ValueEstimators,
)
from torchrl.objectives.value import TD0Estimator, TD1Estimator, TDLambdaEstimator


[docs]class TD3Loss(LossModule): """TD3 Loss module. Args: actor_network (TensorDictModule): the actor to be trained qvalue_network (TensorDictModule): a single Q-value network or a list of Q-value networks. If a single instance of `qvalue_network` is provided, it will be duplicated ``num_qvalue_nets`` times. If a list of modules is passed, their parameters will be stacked unless they share the same identity (in which case the original parameter will be expanded). .. warning:: When a list of parameters if passed, it will __not__ be compared against the policy parameters and all the parameters will be considered as untied. Keyword Args: bounds (tuple of float, optional): the bounds of the action space. Exclusive with action_spec. Either this or ``action_spec`` must be provided. action_spec (TensorSpec, optional): the action spec. Exclusive with bounds. Either this or ``bounds`` must be provided. num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is ``10``. policy_noise (:obj:`float`, optional): Standard deviation for the target policy action noise. Default is ``0.2``. noise_clip (:obj:`float`, optional): Clipping range value for the sampled target policy action noise. Default is ``0.5``. priority_key (str, optional): Key where to write the priority value for prioritized replay buffers. Default is `"td_error"`. loss_function (str, optional): loss function to be used for the Q-value. Can be one of ``"smooth_l1"``, ``"l2"``, ``"l1"``, Default is ``"smooth_l1"``. delay_actor (bool, optional): whether to separate the target actor networks from the actor networks used for data collection. Default is ``True``. delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used for data collection. Default is ``True``. spec (TensorSpec, optional): the action tensor spec. If not provided and the target entropy is ``"auto"``, it will be retrieved from the actor. separate_losses (bool, optional): if ``True``, shared parameters between policy and critic will only be trained on the policy loss. Defaults to ``False``, i.e., gradients are propagated to shared parameters for both policy and critic losses. reduction (str, optional): Specifies the reduction to apply to the output: ``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied, ``"mean"``: the sum of the output will be divided by the number of elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``. Examples: >>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal >>> from torchrl.modules.tensordict_module.actors import Actor, ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.td3 import TD3Loss >>> from tensordict import TensorDict >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> module = nn.Linear(n_obs, n_act) >>> actor = Actor( ... module=module, ... spec=spec) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = TD3Loss(actor, qvalue, action_spec=actor.spec) >>> batch = [2, ] >>> action = spec.rand(batch) >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": action, ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1), ... ("next", "observation"): torch.randn(*batch, n_obs), ... }, batch) >>> loss(data) TensorDict( fields={ loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), next_state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) This class is compatible with non-tensordict based modules too and can be used without recurring to any tensordict-related primitive. In this case, the expected keyword arguments are: ``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and qvalue network The return value is a tuple of tensors in the following order: ``["loss_actor", "loss_qvalue", "pred_value", "state_action_value_actor", "next_state_value", "target_value",]``. Examples: >>> import torch >>> from torch import nn >>> from torchrl.data import Bounded >>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator >>> from torchrl.objectives.td3 import TD3Loss >>> n_act, n_obs = 4, 3 >>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,)) >>> module = nn.Linear(n_obs, n_act) >>> actor = Actor( ... module=module, ... spec=spec) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs + n_act, 1) ... def forward(self, obs, act): ... return self.linear(torch.cat([obs, act], -1)) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation', 'action']) >>> loss = TD3Loss(actor, qvalue, action_spec=actor.spec) >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> batch = [2, ] >>> action = spec.rand(batch) >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_reward=torch.randn(*batch, 1), ... next_observation=torch.randn(*batch, n_obs)) >>> loss_actor.backward() """ @dataclass class _AcceptedKeys: """Maintains default values for all configurable tensordict keys. This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their default values. Attributes: action (NestedKey): The input tensordict key where the action is expected. Defaults to ``"action"``. state_action_value (NestedKey): The input tensordict key where the state action value is expected. Will be used for the underlying value estimator. Defaults to ``"state_action_value"``. priority (NestedKey): The input tensordict key where the target priority is written to. Defaults to ``"td_error"``. reward (NestedKey): The input tensordict key where the reward is expected. Will be used for the underlying value estimator. Defaults to ``"reward"``. done (NestedKey): The key in the input TensorDict that indicates whether a trajectory is done. Will be used for the underlying value estimator. Defaults to ``"done"``. terminated (NestedKey): The key in the input TensorDict that indicates whether a trajectory is terminated. Will be used for the underlying value estimator. Defaults to ``"terminated"``. """ action: NestedKey = "action" state_action_value: NestedKey = "state_action_value" priority: NestedKey = "td_error" reward: NestedKey = "reward" done: NestedKey = "done" terminated: NestedKey = "terminated" default_keys = _AcceptedKeys() default_value_estimator = ValueEstimators.TD0 out_keys = [ "loss_actor", "loss_qvalue", "pred_value", "state_action_value_actor", "next_state_value", "target_value", ] actor_network: TensorDictModule qvalue_network: TensorDictModule actor_network_params: TensorDictParams qvalue_network_params: TensorDictParams target_actor_network_params: TensorDictParams target_qvalue_network_params: TensorDictParams def __init__( self, actor_network: TensorDictModule, qvalue_network: TensorDictModule | List[TensorDictModule], *, action_spec: TensorSpec = None, bounds: Optional[Tuple[float]] = None, num_qvalue_nets: int = 2, policy_noise: float = 0.2, noise_clip: float = 0.5, loss_function: str = "smooth_l1", delay_actor: bool = True, delay_qvalue: bool = True, gamma: float = None, priority_key: str = None, separate_losses: bool = False, reduction: str = None, ) -> None: if reduction is None: reduction = "mean" super().__init__() self._in_keys = None self._set_deprecated_ctor_keys(priority=priority_key) self.delay_actor = delay_actor self.delay_qvalue = delay_qvalue self.convert_to_functional( actor_network, "actor_network", create_target_params=self.delay_actor, ) if separate_losses: # we want to make sure there are no duplicates in the params: the # params of critic must be refs to actor if they're shared policy_params = list(actor_network.parameters()) else: policy_params = None self.convert_to_functional( qvalue_network, "qvalue_network", num_qvalue_nets, create_target_params=self.delay_qvalue, compare_against=policy_params, ) for p in self.parameters(): device = p.device break else: device = None self.num_qvalue_nets = num_qvalue_nets self.loss_function = loss_function self.policy_noise = policy_noise self.noise_clip = noise_clip if not ((action_spec is not None) ^ (bounds is not None)): raise ValueError( "One of 'bounds' and 'action_spec' must be provided, " f"but not both or none. Got bounds={bounds} and action_spec={action_spec}." ) elif action_spec is not None: if isinstance(action_spec, Composite): if ( isinstance(self.tensor_keys.action, tuple) and len(self.tensor_keys.action) > 1 ): action_container_shape = action_spec[ self.tensor_keys.action[:-1] ].shape else: action_container_shape = action_spec.shape action_spec = action_spec[self.tensor_keys.action][ (0,) * len(action_container_shape) ] if not isinstance(action_spec, Bounded): raise ValueError( f"action_spec is not of type Bounded but {type(action_spec)}." ) low = action_spec.space.low high = action_spec.space.high else: low, high = bounds if not isinstance(low, torch.Tensor): low = torch.tensor(low) if not isinstance(high, torch.Tensor): high = torch.tensor(high, device=low.device, dtype=low.dtype) if (low > high).any(): raise ValueError("Got a low bound higher than a high bound.") if device is not None: low = low.to(device) high = high.to(device) self.register_buffer("max_action", high) self.register_buffer("min_action", low) if gamma is not None: raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR) self._make_vmap() self.reduction = reduction def _make_vmap(self): self._vmap_qvalue_network00 = _vmap_func( self.qvalue_network, randomness=self.vmap_randomness ) self._vmap_actor_network00 = _vmap_func( self.actor_network, randomness=self.vmap_randomness ) def _forward_value_estimator_keys(self, **kwargs) -> None: if self._value_estimator is not None: self._value_estimator.set_keys( value=self._tensor_keys.state_action_value, reward=self.tensor_keys.reward, done=self.tensor_keys.done, terminated=self.tensor_keys.terminated, ) self._set_in_keys() def _set_in_keys(self): keys = [ self.tensor_keys.action, ("next", self.tensor_keys.reward), ("next", self.tensor_keys.done), ("next", self.tensor_keys.terminated), *self.actor_network.in_keys, *[("next", key) for key in self.actor_network.in_keys], *self.qvalue_network.in_keys, ] self._in_keys = list(set(keys)) @property def in_keys(self): if self._in_keys is None: self._set_in_keys() return self._in_keys @in_keys.setter def in_keys(self, values): self._in_keys = values @property @_cache_values def _cached_detach_qvalue_network_params(self): return self.qvalue_network_params.detach() @property @_cache_values def _cached_stack_actor_params(self): return torch.stack( [self.actor_network_params, self.target_actor_network_params], 0 ) def actor_loss(self, tensordict) -> Tuple[torch.Tensor, dict]: tensordict_actor_grad = tensordict.select( *self.actor_network.in_keys, strict=False ) with self.actor_network_params.to_module(self.actor_network): tensordict_actor_grad = self.actor_network(tensordict_actor_grad) actor_loss_td = tensordict_actor_grad.select( *self.qvalue_network.in_keys, strict=False ).expand( self.num_qvalue_nets, *tensordict_actor_grad.batch_size ) # for actor loss state_action_value_actor = ( self._vmap_qvalue_network00( actor_loss_td, self._cached_detach_qvalue_network_params, ) .get(self.tensor_keys.state_action_value) .squeeze(-1) ) loss_actor = -(state_action_value_actor[0]) metadata = { "state_action_value_actor": state_action_value_actor.detach(), } loss_actor = _reduce(loss_actor, reduction=self.reduction) return loss_actor, metadata def value_loss(self, tensordict) -> Tuple[torch.Tensor, dict]: tensordict = tensordict.clone(False) act = tensordict.get(self.tensor_keys.action) # computing early for reprod noise = (torch.randn_like(act) * self.policy_noise).clamp( -self.noise_clip, self.noise_clip ) with torch.no_grad(): next_td_actor = step_mdp(tensordict).select( *self.actor_network.in_keys, strict=False ) # next_observation -> with self.target_actor_network_params.to_module(self.actor_network): next_td_actor = self.actor_network(next_td_actor) next_action = (next_td_actor.get(self.tensor_keys.action) + noise).clamp( self.min_action, self.max_action ) next_td_actor.set( self.tensor_keys.action, next_action, ) next_val_td = next_td_actor.select( *self.qvalue_network.in_keys, strict=False ).expand( self.num_qvalue_nets, *next_td_actor.batch_size ) # for next value estimation next_target_q1q2 = ( self._vmap_qvalue_network00( next_val_td, self.target_qvalue_network_params, ) .get(self.tensor_keys.state_action_value) .squeeze(-1) ) # min over the next target qvalues next_target_qvalue = next_target_q1q2.min(0)[0] # set next target qvalues tensordict.set( ("next", self.tensor_keys.state_action_value), next_target_qvalue.unsqueeze(-1), ) qval_td = tensordict.select(*self.qvalue_network.in_keys, strict=False).expand( self.num_qvalue_nets, *tensordict.batch_size, ) # preditcted current qvalues current_qvalue = ( self._vmap_qvalue_network00( qval_td, self.qvalue_network_params, ) .get(self.tensor_keys.state_action_value) .squeeze(-1) ) # compute target values for the qvalue loss (reward + gamma * next_target_qvalue * (1 - done)) target_value = self.value_estimator.value_estimate(tensordict).squeeze(-1) td_error = (current_qvalue - target_value).pow(2) loss_qval = distance_loss( current_qvalue, target_value.expand_as(current_qvalue), loss_function=self.loss_function, ).sum(0) metadata = { "td_error": td_error, "next_state_value": next_target_qvalue.detach(), "pred_value": current_qvalue.detach(), "target_value": target_value.detach(), } loss_qval = _reduce(loss_qval, reduction=self.reduction) return loss_qval, metadata
[docs] @dispatch def forward(self, tensordict: TensorDictBase) -> TensorDictBase: tensordict_save = tensordict loss_actor, metadata_actor = self.actor_loss(tensordict) loss_qval, metadata_value = self.value_loss(tensordict_save) tensordict_save.set( self.tensor_keys.priority, metadata_value.pop("td_error").detach().max(0)[0] ) if not loss_qval.shape == loss_actor.shape: raise RuntimeError( f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}" ) td_out = TensorDict( source={ "loss_actor": loss_actor, "loss_qvalue": loss_qval, **metadata_actor, **metadata_value, }, batch_size=[], ) return td_out
[docs] def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams): if value_type is None: value_type = self.default_value_estimator self.value_type = value_type hp = dict(default_value_kwargs(value_type)) if hasattr(self, "gamma"): hp["gamma"] = self.gamma hp.update(hyperparams) # we do not need a value network bc the next state value is already passed if value_type == ValueEstimators.TD1: self._value_estimator = TD1Estimator(value_network=None, **hp) elif value_type == ValueEstimators.TD0: self._value_estimator = TD0Estimator(value_network=None, **hp) elif value_type == ValueEstimators.GAE: raise NotImplementedError( f"Value type {value_type} it not implemented for loss {type(self)}." ) elif value_type == ValueEstimators.TDLambda: self._value_estimator = TDLambdaEstimator(value_network=None, **hp) else: raise NotImplementedError(f"Unknown value type {value_type}") tensor_keys = { "value": self.tensor_keys.state_action_value, "reward": self.tensor_keys.reward, "done": self.tensor_keys.done, "terminated": self.tensor_keys.terminated, } self._value_estimator.set_keys(**tensor_keys)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources