Shortcuts

Source code for torchrl.modules.distributions.continuous

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations

import warnings
import weakref
from numbers import Number
from typing import Dict, Optional, Sequence, Tuple, Union

import numpy as np
import torch
from packaging import version
from torch import distributions as D, nn

from torch.distributions import constraints
from torch.distributions.transforms import _InverseTransform

from torchrl.modules.distributions.truncated_normal import (
    TruncatedNormal as _TruncatedNormal,
)

from torchrl.modules.distributions.utils import (
    _cast_device,
    FasterTransformedDistribution,
    safeatanh_noeps,
    safetanh_noeps,
)
from torchrl.modules.utils import mappings

# speeds up distribution construction
D.Distribution.set_default_validate_args(False)

try:
    from torch.compiler import assume_constant_result
except ImportError:
    from torch._dynamo import assume_constant_result

try:
    from torch.compiler import is_dynamo_compiling
except ImportError:
    from torch._dynamo import is_compiling as is_dynamo_compiling

TORCH_VERSION = version.parse(torch.__version__).base_version
TORCH_VERSION_PRE_2_6 = version.parse(TORCH_VERSION) < version.parse("2.6.0")


[docs]class IndependentNormal(D.Independent): """Implements a Normal distribution with location scaling. Location scaling prevents the location to be "too far" from 0, which ultimately leads to numerically unstable samples and poor gradient computation (e.g. gradient explosion). In practice, the location is computed according to .. math:: loc = tanh(loc / upscale) * upscale. This behavior can be disabled by switching off the tanh_loc parameter (see below). Args: loc (torch.Tensor): normal distribution location parameter scale (torch.Tensor): normal distribution sigma parameter (squared root of variance) upscale (torch.Tensor or number, optional): 'a' scaling factor in the formula: .. math:: loc = tanh(loc / upscale) * upscale. Default is 5.0 tanh_loc (bool, optional): if ``False``, the above formula is used for the location scaling, otherwise the raw value is kept. Default is ``False``; """ num_params: int = 2 def __init__( self, loc: torch.Tensor, scale: torch.Tensor, upscale: float = 5.0, tanh_loc: bool = False, event_dim: int = 1, **kwargs, ): self.tanh_loc = tanh_loc self.upscale = upscale self._event_dim = event_dim self._kwargs = kwargs super().__init__(D.Normal(loc, scale, **kwargs), event_dim) def update(self, loc, scale): if self.tanh_loc: loc = self.upscale * (loc / self.upscale).tanh() super().__init__(D.Normal(loc, scale, **self._kwargs), self._event_dim) @property def mode(self): return self.base_dist.mean @property def deterministic_sample(self): return self.mean
class SafeTanhTransform(D.TanhTransform): """TanhTransform subclass that ensured that the transformation is numerically invertible.""" def _call(self, x: torch.Tensor) -> torch.Tensor: return safetanh_noeps(x) def _inverse(self, y: torch.Tensor) -> torch.Tensor: return safeatanh_noeps(y) @property def inv(self): inv = None if self._inv is not None: inv = self._inv() if inv is None: inv = _InverseTransform(self) if not is_dynamo_compiling(): self._inv = weakref.ref(inv) return inv
[docs]class NormalParamWrapper(nn.Module): """A wrapper for normal distribution parameters. Args: operator (nn.Module): operator whose output will be transformed_in in location and scale parameters scale_mapping (str, optional): positive mapping function to be used with the std. default = "biased_softplus_1.0" (i.e. softplus map with bias such that fn(0.0) = 1.0) choices: "softplus", "exp", "relu", "biased_softplus_1"; scale_lb (Number, optional): The minimum value that the variance can take. Default is 1e-4. Examples: >>> from torch import nn >>> import torch >>> module = nn.Linear(3, 4) >>> module_normal = NormalParamWrapper(module) >>> tensor = torch.randn(3) >>> loc, scale = module_normal(tensor) >>> print(loc.shape, scale.shape) torch.Size([2]) torch.Size([2]) >>> assert (scale > 0).all() >>> # with modules that return more than one tensor >>> module = nn.LSTM(3, 4) >>> module_normal = NormalParamWrapper(module) >>> tensor = torch.randn(4, 2, 3) >>> loc, scale, others = module_normal(tensor) >>> print(loc.shape, scale.shape) torch.Size([4, 2, 2]) torch.Size([4, 2, 2]) >>> assert (scale > 0).all() """ def __init__( self, operator: nn.Module, scale_mapping: str = "biased_softplus_1.0", scale_lb: Number = 1e-4, ) -> None: warnings.warn( "The NormalParamWrapper class will be deprecated in v0.7 in favor of :class:`~tensordict.nn.NormalParamExtractor`.", category=DeprecationWarning, ) super().__init__() self.operator = operator self.scale_mapping = scale_mapping self.scale_lb = scale_lb
[docs] def forward(self, *tensors: torch.Tensor) -> Tuple[torch.Tensor]: net_output = self.operator(*tensors) others = () if not isinstance(net_output, torch.Tensor): net_output, *others = net_output loc, scale = net_output.chunk(2, -1) scale = mappings(self.scale_mapping)(scale).clamp_min(self.scale_lb) return (loc, scale, *others)
[docs]class TruncatedNormal(D.Independent): """Implements a Truncated Normal distribution with location scaling. Location scaling prevents the location to be "too far" from 0, which ultimately leads to numerically unstable samples and poor gradient computation (e.g. gradient explosion). In practice, the location is computed according to .. math:: loc = tanh(loc / upscale) * upscale. This behavior can be disabled by switching off the tanh_loc parameter (see below). Args: loc (torch.Tensor): normal distribution location parameter scale (torch.Tensor): normal distribution sigma parameter (squared root of variance) upscale (torch.Tensor or number, optional): 'a' scaling factor in the formula: .. math:: loc = tanh(loc / upscale) * upscale. Default is 5.0 min (torch.Tensor or number, optional): minimum value of the distribution. Default = -1.0; max (torch.Tensor or number, optional): maximum value of the distribution. Default = 1.0; tanh_loc (bool, optional): if ``True``, the above formula is used for the location scaling, otherwise the raw value is kept. Default is ``False``; """ num_params: int = 2 base_dist: _TruncatedNormal arg_constraints = { "loc": constraints.real, "scale": constraints.greater_than(1e-6), } def __init__( self, loc: torch.Tensor, scale: torch.Tensor, upscale: Union[torch.Tensor, float] = 5.0, low: Union[torch.Tensor, float] = -1.0, high: Union[torch.Tensor, float] = 1.0, tanh_loc: bool = False, ): err_msg = "TanhNormal high values must be strictly greater than low values" if isinstance(high, torch.Tensor) or isinstance(low, torch.Tensor): if not (high > low).all(): raise RuntimeError(err_msg) elif isinstance(high, Number) and isinstance(low, Number): if not high > low: raise RuntimeError(err_msg) else: if not all(high > low): raise RuntimeError(err_msg) if isinstance(high, torch.Tensor): self.non_trivial_max = (high != 1.0).any() else: self.non_trivial_max = high != 1.0 if isinstance(low, torch.Tensor): self.non_trivial_min = (low != -1.0).any() else: self.non_trivial_min = low != -1.0 self.tanh_loc = tanh_loc self.device = loc.device self.upscale = torch.as_tensor(upscale, device=self.device) high = torch.as_tensor(high, device=self.device) low = torch.as_tensor(low, device=self.device) self.low = low self.high = high self.update(loc, scale) @property def min(self): self._warn_minmax() return self.low @property def max(self): self._warn_minmax() return self.high def update(self, loc: torch.Tensor, scale: torch.Tensor) -> None: if self.tanh_loc: loc = (loc / self.upscale).tanh() * self.upscale self.loc = loc self.scale = scale base_dist = _TruncatedNormal( loc, scale, a=self.low.expand_as(loc), b=self.high.expand_as(scale), device=self.device, ) super().__init__(base_dist, 1, validate_args=False) @property def mode(self): m = self.base_dist.loc a = self.base_dist._non_std_a + self.base_dist._dtype_min_gt_0 b = self.base_dist._non_std_b - self.base_dist._dtype_min_gt_0 m = torch.min(torch.stack([m, b], -1), dim=-1)[0] return torch.max(torch.stack([m, a], -1), dim=-1)[0] @property def deterministic_sample(self): return self.mean
[docs] def log_prob(self, value, **kwargs): above_or_below = (self.low > value) | (self.high < value) a = self.base_dist._non_std_a + self.base_dist._dtype_min_gt_0 a = a.expand_as(value) b = self.base_dist._non_std_b - self.base_dist._dtype_min_gt_0 b = b.expand_as(value) value = torch.min(torch.stack([value, b], -1), dim=-1)[0] value = torch.max(torch.stack([value, a], -1), dim=-1)[0] lp = super().log_prob(value, **kwargs) if above_or_below.any(): if self.event_shape: above_or_below = above_or_below.flatten(-len(self.event_shape), -1).any( -1 ) lp = torch.masked_fill( lp, above_or_below.expand_as(lp), torch.tensor(-float("inf"), device=lp.device, dtype=lp.dtype), ) return lp
class _PatchedComposeTransform(D.ComposeTransform): @property def inv(self): inv = None if self._inv is not None: inv = self._inv() if inv is None: inv = _PatchedComposeTransform([p.inv for p in reversed(self.parts)]) if not is_dynamo_compiling(): self._inv = weakref.ref(inv) inv._inv = weakref.ref(self) return inv class _PatchedAffineTransform(D.AffineTransform): @property def inv(self): inv = None if self._inv is not None: inv = self._inv() if inv is None: inv = _InverseTransform(self) if not is_dynamo_compiling(): self._inv = weakref.ref(inv) return inv
[docs]class TanhNormal(FasterTransformedDistribution): """Implements a TanhNormal distribution with location scaling. Location scaling prevents the location to be "too far" from 0 when a ``TanhTransform`` is applied, but ultimately leads to numerically unstable samples and poor gradient computation (e.g. gradient explosion). In practice, with location scaling the location is computed according to .. math:: loc = tanh(loc / upscale) * upscale. Args: loc (torch.Tensor): normal distribution location parameter scale (torch.Tensor): normal distribution sigma parameter (squared root of variance) upscale (torch.Tensor or number): 'a' scaling factor in the formula: .. math:: loc = tanh(loc / upscale) * upscale. low (torch.Tensor or number, optional): minimum value of the distribution. Default is -1.0; high (torch.Tensor or number, optional): maximum value of the distribution. Default is 1.0; event_dims (int, optional): number of dimensions describing the action. Default is 1. Setting ``event_dims`` to ``0`` will result in a log-probability that has the same shape as the input, ``1`` will reduce (sum over) the last dimension, ``2`` the last two etc. tanh_loc (bool, optional): if ``True``, the above formula is used for the location scaling, otherwise the raw value is kept. Default is ``False``; safe_tanh (bool, optional): if ``True``, the Tanh transform is done "safely", to avoid numerical overflows. This will currently break with :func:`torch.compile`. """ arg_constraints = { "loc": constraints.real, "scale": constraints.greater_than(1e-6), } num_params = 2 def __init__( self, loc: torch.Tensor, scale: torch.Tensor, upscale: Union[torch.Tensor, Number] = 5.0, low: Union[torch.Tensor, Number] = -1.0, high: Union[torch.Tensor, Number] = 1.0, event_dims: int | None = None, tanh_loc: bool = False, safe_tanh: bool = True, ): if not isinstance(loc, torch.Tensor): loc = torch.as_tensor(loc, dtype=torch.get_default_dtype()) if not isinstance(scale, torch.Tensor): scale = torch.as_tensor(scale, dtype=torch.get_default_dtype()) if event_dims is None: event_dims = min(1, loc.ndim) err_msg = "TanhNormal high values must be strictly greater than low values" if not is_dynamo_compiling(): if isinstance(high, torch.Tensor) or isinstance(low, torch.Tensor): if not (high > low).all(): raise RuntimeError(err_msg) elif isinstance(high, Number) and isinstance(low, Number): if not high > low: raise RuntimeError(err_msg) else: if not all(high > low): raise RuntimeError(err_msg) high = torch.as_tensor(high, device=loc.device) low = torch.as_tensor(low, device=loc.device) self.non_trivial_max = (high != 1.0).any() self.non_trivial_min = (low != -1.0).any() self.tanh_loc = tanh_loc self._event_dims = event_dims self.device = loc.device self.upscale = ( upscale if not isinstance(upscale, torch.Tensor) else upscale.to(self.device) ) if isinstance(high, torch.Tensor): high = high.to(loc.device) if isinstance(low, torch.Tensor): low = low.to(loc.device) self.low = low self.high = high if safe_tanh: if is_dynamo_compiling() and TORCH_VERSION_PRE_2_6: _err_compile_safetanh() t = SafeTanhTransform() else: t = D.TanhTransform() # t = D.TanhTransform() if is_dynamo_compiling() or (self.non_trivial_max or self.non_trivial_min): t = _PatchedComposeTransform( [ t, _PatchedAffineTransform( loc=(high + low) / 2, scale=(high - low) / 2 ), ] ) self._t = t self.update(loc, scale) @property def min(self): self._warn_minmax() return self.low @property def max(self): self._warn_minmax() return self.high def update(self, loc: torch.Tensor, scale: torch.Tensor) -> None: if self.tanh_loc: loc = (loc / self.upscale).tanh() * self.upscale # loc must be rescaled if tanh_loc if is_dynamo_compiling() or (self.non_trivial_max or self.non_trivial_min): loc = loc + (self.high - self.low) / 2 + self.low self.loc = loc self.scale = scale if ( hasattr(self, "base_dist") and (self.root_dist.loc.shape == self.loc.shape) and (self.root_dist.scale.shape == self.scale.shape) ): self.root_dist.loc = self.loc self.root_dist.scale = self.scale else: if self._event_dims > 0: base = D.Independent(D.Normal(self.loc, self.scale), self._event_dims) super().__init__(base, self._t) else: base = D.Normal(self.loc, self.scale) super().__init__(base, self._t) @property def support(self): return D.constraints.real() @property def root_dist(self): bd = self while hasattr(bd, "base_dist"): bd = bd.base_dist return bd @property def mode(self): raise RuntimeError( f"The distribution {type(self).__name__} has not analytical mode. " f"Use ExplorationMode.DETERMINISTIC to get a deterministic sample from it." ) @property def deterministic_sample(self): m = self.root_dist.mean for t in self.transforms: m = t(m) return m
[docs] @torch.enable_grad() def get_mode(self): """Computes an estimation of the mode using the Adam optimizer.""" # Get starting point m = self.sample((1000,)).mean(0) m = torch.nn.Parameter(m.clamp(self.low, self.high).detach()) optim = torch.optim.Adam((m,), lr=1e-2) self_copy = type(self)( loc=self.loc.detach(), scale=self.scale.detach(), low=self.low.detach(), high=self.high.detach(), event_dims=self._event_dims, upscale=self.upscale, tanh_loc=False, ) for _ in range(200): lp = -self_copy.log_prob(m) lp.mean().backward() mc = m.clone().detach() m.grad.clamp_max_(1) optim.step() optim.zero_grad() m.data.clamp_(self_copy.low, self_copy.high) nans = m.isnan() if nans.any(): m.data = torch.where(nans, mc, m.data) if (m - mc).norm() < 1e-3: break return m.detach()
@property def mean(self): raise NotImplementedError( f"{type(self).__name__} does not have a closed form formula for the average. " "Am estimate of this value can be computed using dist.sample((N,)).mean(dim=0), " "where N is a large number of samples." )
def uniform_sample_tanhnormal(dist: TanhNormal, size=None) -> torch.Tensor: """Defines what uniform sampling looks like for a TanhNormal distribution. Args: dist (TanhNormal): distribution defining the space where the sampling should occur. size (torch.Size): batch-size of the output tensor Returns: a tensor sampled uniformly in the boundaries defined by the input distribution. """ if size is None: size = torch.Size([]) return torch.rand_like(dist.sample(size)) * (dist.max - dist.min) + dist.min
[docs]class Delta(D.Distribution): """Delta distribution. Args: param (torch.Tensor): parameter of the delta distribution; atol (number, optional): absolute tolerance to consider that a tensor matches the distribution parameter; Default is 1e-6 rtol (number, optional): relative tolerance to consider that a tensor matches the distribution parameter; Default is 1e-6 batch_shape (torch.Size, optional): batch shape; event_shape (torch.Size, optional): shape of the outcome. """ arg_constraints: Dict = {} def __init__( self, param: torch.Tensor, atol: float = 1e-6, rtol: float = 1e-6, batch_shape: Union[torch.Size, Sequence[int]] = None, event_shape: Union[torch.Size, Sequence[int]] = None, ): if batch_shape is None: batch_shape = torch.Size([]) if event_shape is None: event_shape = torch.Size([]) self.update(param) self.atol = atol self.rtol = rtol if not len(batch_shape) and not len(event_shape): batch_shape = param.shape[:-1] event_shape = param.shape[-1:] super().__init__(batch_shape=batch_shape, event_shape=event_shape)
[docs] def expand(self, batch_shape: torch.Size, _instance=None): if self.batch_shape != tuple(batch_shape): return type(self)( self.param.expand((*batch_shape, *self.event_shape)), atol=self.atol, rtol=self.rtol, ) return self
def update(self, param): self.param = param def _is_equal(self, value: torch.Tensor) -> torch.Tensor: param = self.param.expand_as(value) is_equal = abs(value - param) < self.atol + self.rtol * abs(param) for i in range(-1, -len(self.event_shape) - 1, -1): is_equal = is_equal.all(i) return is_equal
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor: is_equal = self._is_equal(value) out = torch.zeros_like(is_equal, dtype=value.dtype) out.masked_fill_(is_equal, np.inf) out.masked_fill_(~is_equal, -np.inf) return out
[docs] @torch.no_grad() def sample(self, size=None) -> torch.Tensor: if size is None: size = torch.Size([]) return self.param.expand(*size, *self.param.shape)
[docs] def rsample(self, size=None) -> torch.Tensor: if size is None: size = torch.Size([]) return self.param.expand(*size, *self.param.shape)
@property def mode(self) -> torch.Tensor: return self.param @property def deterministic_sample(self): return self.mean @property def mean(self) -> torch.Tensor: return self.param
[docs]class TanhDelta(FasterTransformedDistribution): """Implements a Tanh transformed_in Delta distribution. Args: param (torch.Tensor): parameter of the delta distribution; low (torch.Tensor or number, optional): minimum value of the distribution. Default is -1.0; high (torch.Tensor or number, optional): maximum value of the distribution. Default is 1.0; event_dims (int, optional): number of dimensions describing the action. Default is 1; atol (number, optional): absolute tolerance to consider that a tensor matches the distribution parameter; Default is 1e-6 rtol (number, optional): relative tolerance to consider that a tensor matches the distribution parameter; Default is 1e-6 batch_shape (torch.Size, optional): batch shape; event_shape (torch.Size, optional): shape of the outcome; """ arg_constraints = { "loc": constraints.real, } def __init__( self, param: torch.Tensor, low: Union[torch.Tensor, float] = -1.0, high: Union[torch.Tensor, float] = 1.0, event_dims: int = 1, atol: float = 1e-6, rtol: float = 1e-6, safe: bool = True, ): minmax_msg = "high value has been found to be equal or less than low value" if isinstance(high, torch.Tensor) or isinstance(low, torch.Tensor): if not (high > low).all(): raise ValueError(minmax_msg) elif isinstance(high, Number) and isinstance(low, Number): if high <= low: raise ValueError(minmax_msg) else: if not all(high > low): raise ValueError(minmax_msg) if safe: if is_dynamo_compiling(): _err_compile_safetanh() t = SafeTanhTransform() else: t = torch.distributions.TanhTransform() non_trivial_min = is_dynamo_compiling or ( (isinstance(low, torch.Tensor) and (low != -1.0).any()) or (not isinstance(low, torch.Tensor) and low != -1.0) ) non_trivial_max = is_dynamo_compiling or ( (isinstance(high, torch.Tensor) and (high != 1.0).any()) or (not isinstance(high, torch.Tensor) and high != 1.0) ) self.non_trivial = non_trivial_min or non_trivial_max self.low = _cast_device(low, param.device) self.high = _cast_device(high, param.device) loc = self.update(param) if self.non_trivial: t = _PatchedComposeTransform( [ t, _PatchedAffineTransform( loc=(self.high + self.low) / 2, scale=(self.high - self.low) / 2 ), ] ) event_shape = param.shape[-event_dims:] batch_shape = param.shape[:-event_dims] base = Delta( loc, atol=atol, rtol=rtol, batch_shape=batch_shape, event_shape=event_shape, ) super().__init__(base, t) @property def min(self): self._warn_minmax() return self.low @property def max(self): self._warn_minmax() return self.high def update(self, net_output: torch.Tensor) -> Optional[torch.Tensor]: loc = net_output if self.non_trivial: device = loc.device shift = _cast_device(self.high - self.low, device) loc = loc + shift / 2 + _cast_device(self.low, device) if hasattr(self, "base_dist"): self.base_dist.update(loc) else: return loc @property def mode(self) -> torch.Tensor: mode = self.base_dist.param for t in self.transforms: mode = t(mode) return mode @property def deterministic_sample(self): return self.mode @property def mean(self) -> torch.Tensor: raise AttributeError("TanhDelta mean has not analytical form.")
def _uniform_sample_delta(dist: Delta, size=None) -> torch.Tensor: if size is None: size = torch.Size([]) return torch.randn_like(dist.sample(size)) uniform_sample_delta = _uniform_sample_delta def _err_compile_safetanh(): raise RuntimeError( "safe_tanh=True in TanhNormal is not compatible with torch.compile with torch pre 2.6.0. " " To deactivate it, pass safe_tanh=False. " "If you are using a ProbabilisticTensorDictModule, this can be done via " "`distribution_kwargs={'safe_tanh': False}`. " "See https://github.com/pytorch/pytorch/issues/133529 for more details." ) _warn_compile_safetanh = assume_constant_result(_err_compile_safetanh)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources