• Docs >
  • Bundled Program – a Tool for ExecuTorch Model Validation
Shortcuts

Bundled Program – a Tool for ExecuTorch Model Validation

Introduction

BundledProgram is a wrapper around the core ExecuTorch program designed to help users wrapping test cases with the model they deploy. BundledProgram is not necessarily a core part of the program and not needed for its execution, but is particularly important for various other use-cases, such as model correctness evaluation, including e2e testing during the model bring-up process.

Overall, the procedure can be broken into two stages, and in each stage we are supporting:

  • Emit stage: Bundling the test I/O cases along with the ExecuTorch program, serializing into flatbuffer.

  • Runtime stage: Accessing, executing, and verifying the bundled test cases during runtime.

Emit stage

This stage mainly focuses on the creation of a BundledProgram and dumping it out to the disk as a flatbuffer file. The main procedure is as follow:

  1. Create a model and emit its ExecuTorch program.

  2. Construct a List[MethodTestSuite] to record all test cases that needs to be bundled.

  3. Generate BundledProgram by using the emited model and List[MethodTestSuite].

  4. Serialize the BundledProgram and dump it out to the disk.

Step 1: Create a Model and Emit its ExecuTorch Program.

ExecuTorch Program can be emitted from user’s model by using ExecuTorch APIs. Follow the Generate Sample ExecuTorch program or Exporting to ExecuTorch tutorial.

Step 2: Construct List[MethodTestSuite] to hold test info

In BundledProgram, we create two new classes, MethodTestCase and MethodTestSuite, to hold essential info for ExecuTorch program verification.

MethodTestCase represents a single testcase. Each MethodTestCase contains inputs and expected outputs for a single execution.

MethodTestCase
executorch.devtools.bundled_program.config.MethodTestCase.__init__(self, inputs, expected_outputs=None)

Single test case for verifying specific method

Parameters
  • inputs

    All inputs required by eager_model with specific inference method for one-time execution.

    It is worth mentioning that, although both bundled program and ET runtime apis support setting input other than torch.tensor type, only the input in torch.tensor type will be actually updated in the method, and the rest of the inputs will just do a sanity check if they match the default value in method.

  • expected_outputs – Expected output of given input for verification. It can be None if user only wants to use the test case for profiling.

Returns

self

MethodTestSuite contains all testing info for single method, including a str representing method name, and a List[MethodTestCase] for all testcases:

MethodTestSuite
executorch.devtools.bundled_program.config.MethodTestSuite(method_name, test_cases)[source]

All test info related to verify method

executorch.devtools.bundled_program.config.method_name

Name of the method to be verified.

executorch.devtools.bundled_program.config.test_cases

All test cases for verifying the method.

Since each model may have multiple inference methods, we need to generate List[MethodTestSuite] to hold all essential infos.

Step 3: Generate BundledProgram

We provide BundledProgram class under executorch/devtools/bundled_program/core.py to bundled the ExecutorchProgram-like variable, including ExecutorchProgram, MultiMethodExecutorchProgram or ExecutorchProgramManager, with the List[MethodTestSuite]:

BundledProgram
executorch.devtools.bundled_program.core.BundledProgram.__init__(self, executorch_program, method_test_suites)

Create BundledProgram by bundling the given program and method_test_suites together.

Parameters
  • executorch_program – The program to be bundled.

  • method_test_suites – The testcases for certain methods to be bundled.

Construtor of BundledProgram will do sannity check internally to see if the given List[MethodTestSuite] matches the given Program’s requirements. Specifically:

  1. The method_names of each MethodTestSuite in List[MethodTestSuite] for should be also in program. Please notice that it is no need to set testcases for every method in the Program.

  2. The metadata of each testcase should meet the requirement of the coresponding inference methods input.

Step 4: Serialize BundledProgram to Flatbuffer.

To serialize BundledProgram to make runtime APIs use it, we provide two APIs, both under executorch/devtools/bundled_program/serialize/__init__.py.

Serialize and Deserialize
executorch.devtools.bundled_program.serialize.serialize_from_bundled_program_to_flatbuffer(bundled_program)[source]

Serialize a BundledProgram into FlatBuffer binary format.

Parameters

bundled_program (BundledProgram) – The BundledProgram variable to be serialized.

Returns

The serialized FlatBuffer binary data in bytes.

executorch.devtools.bundled_program.serialize.deserialize_from_flatbuffer_to_bundled_program(flatbuffer)[source]

Deserialize a FlatBuffer binary format into a BundledProgram.

Parameters

flatbuffer (bytes) – The FlatBuffer binary data in bytes.

Returns

A BundledProgram instance.

Emit Example

Here is a flow highlighting how to generate a BundledProgram given a PyTorch model and the representative inputs we want to test it along with.

import torch

from executorch.exir import to_edge
from executorch.devtools import BundledProgram

from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from executorch.devtools.bundled_program.serialize import (
    serialize_from_bundled_program_to_flatbuffer,
)
from torch._export import capture_pre_autograd_graph
from torch.export import export


# Step 1: ExecuTorch Program Export
class SampleModel(torch.nn.Module):
    """An example model with multi-methods. Each method has multiple input and single output"""

    def __init__(self) -> None:
        super().__init__()
        self.a: torch.Tensor = 3 * torch.ones(2, 2, dtype=torch.int32)
        self.b: torch.Tensor = 2 * torch.ones(2, 2, dtype=torch.int32)

    def forward(self, x: torch.Tensor, q: torch.Tensor) -> torch.Tensor:
        z = x.clone()
        torch.mul(self.a, x, out=z)
        y = x.clone()
        torch.add(z, self.b, out=y)
        torch.add(y, q, out=y)
        return y


# Inference method name of SampleModel we want to bundle testcases to.
# Notices that we do not need to bundle testcases for every inference methods.
method_name = "forward"
model = SampleModel()

# Inputs for graph capture.
capture_input = (
    (torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
    (torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
)

# Export method's FX Graph.
method_graph = export(
    capture_pre_autograd_graph(model, capture_input),
    capture_input,
)


# Emit the traced method into ET Program.
et_program = to_edge(method_graph).to_executorch()

# Step 2: Construct MethodTestSuite for Each Method

# Prepare the Test Inputs.

# Number of input sets to be verified
n_input = 10

# Input sets to be verified.
inputs = [
    # Each list below is a individual input set.
    # The number of inputs, dtype and size of each input follow Program's spec.
    [
        (torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
        (torch.rand(2, 2) - 0.5).to(dtype=torch.int32),
    ]
    for _ in range(n_input)
]

# Generate Test Suites
method_test_suites = [
    MethodTestSuite(
        method_name=method_name,
        test_cases=[
            MethodTestCase(
                inputs=input,
                expected_outputs=(getattr(model, method_name)(*input), ),
            )
            for input in inputs
        ],
    ),
]

# Step 3: Generate BundledProgram
bundled_program = BundledProgram(et_program, method_test_suites)

# Step 4: Serialize BundledProgram to flatbuffer.
serialized_bundled_program = serialize_from_bundled_program_to_flatbuffer(
    bundled_program
)
save_path = "bundled_program.bpte"
with open(save_path, "wb") as f:
    f.write(serialized_bundled_program)

We can also regenerate BundledProgram from flatbuffer file if needed:

from executorch.devtools.bundled_program.serialize import deserialize_from_flatbuffer_to_bundled_program
save_path = "bundled_program.bpte"
with open(save_path, "rb") as f:
    serialized_bundled_program = f.read()

regenerate_bundled_program = deserialize_from_flatbuffer_to_bundled_program(serialized_bundled_program)

Runtime Stage

This stage mainly focuses on executing the model with the bundled inputs and and comparing the model’s output with the bundled expected output. We provide multiple APIs to handle the key parts of it.

Get ExecuTorch Program Pointer from BundledProgram Buffer

We need the pointer to ExecuTorch program to do the execution. To unify the process of loading and executing BundledProgram and Program flatbuffer, we create an API:

GetProgramData

Warning

doxygenfunction: Cannot find function “torch::executor::bundled_program::GetProgramData” in doxygen xml output for project “ExecuTorch” from directory: ../build/xml/

Here’s an example of how to use the GetProgramData API:

// Assume that the user has read the contents of the file into file_data using
// whatever method works best for their application. The file could contain
// either BundledProgram data or Program data.
void* file_data = ...;
size_t file_data_len = ...;

// If file_data contains a BundledProgram, GetProgramData() will return a
// pointer to the Program data embedded inside it. Otherwise it will return
// file_data, which already pointed to Program data.
const void* program_ptr;
size_t program_len;
status = torch::executor::bundled_program::GetProgramData(
    file_data, file_data_len, &program_ptr, &program_len);
ET_CHECK_MSG(
    status == Error::Ok,
    "GetProgramData() failed with status 0x%" PRIx32,
    status);

Load Bundled Input to Method

To execute the program on the bundled input, we need to load the bundled input into the method. Here we provided an API called torch::executor::bundled_program::LoadBundledInput:

LoadBundledInput

Warning

doxygenfunction: Cannot find function “torch::executor::bundled_program::LoadBundledInput” in doxygen xml output for project “ExecuTorch” from directory: ../build/xml/

Verify the Method’s Output.

We call torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput to verify the method’s output with bundled expected outputs. Here’s the details of this API:

VerifyResultWithBundledExpectedOutput

Warning

doxygenfunction: Cannot find function “torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput” in doxygen xml output for project “ExecuTorch” from directory: ../build/xml/

Runtime Example

Here we provide an example about how to run the bundled program step by step. Most of the code is borrowed from executor_runner, and please review that file if you need more info and context:

// method_name is the name for the method we want to test
// memory_manager is the executor::MemoryManager variable for executor memory allocation.
// program is the ExecuTorch program.
Result<Method> method = program->load_method(method_name, &memory_manager);

ET_CHECK_MSG(
    method.ok(),
    "load_method() failed with status 0x%" PRIx32,
    method.error());

// Load testset_idx-th input in the buffer to plan
status = torch::executor::bundled_program::LoadBundledInput(
        *method,
        program_data.bundled_program_data(),
        FLAGS_testset_idx);
ET_CHECK_MSG(
    status == Error::Ok,
    "LoadBundledInput failed with status 0x%" PRIx32,
    status);

// Execute the plan
status = method->execute();
ET_CHECK_MSG(
    status == Error::Ok,
    "method->execute() failed with status 0x%" PRIx32,
    status);

// Verify the result.
status = torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput(
        *method,
        program_data.bundled_program_data(),
        FLAGS_testset_idx,
        FLAGS_rtol,
        FLAGS_atol);
ET_CHECK_MSG(
    status == Error::Ok,
    "Bundle verification failed with status 0x%" PRIx32,
    status);

Common Errors

Errors will be raised if List[MethodTestSuites] doesn’t match the Program. Here’re two common situations:

Test input doesn’t match model’s requirement.

Each inference method of PyTorch model has its own requirement for the inputs, like number of input, the dtype of each input, etc. BundledProgram will raise error if test input not meet the requirement.

Here’s the example of the dtype of test input not meet model’s requirement:

import torch

from executorch.exir import to_edge
from executorch.devtools import BundledProgram

from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from torch.export import export


class Module(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.a = 3 * torch.ones(2, 2, dtype=torch.float)
        self.b = 2 * torch.ones(2, 2, dtype=torch.float)

    def forward(self, x):
        out_1 = torch.ones(2, 2, dtype=torch.float)
        out_2 = torch.ones(2, 2, dtype=torch.float)
        torch.mul(self.a, x, out=out_1)
        torch.add(out_1, self.b, out=out_2)
        return out_2


model = Module()
method_names = ["forward"]

inputs = (torch.ones(2, 2, dtype=torch.float), )

# Find each method of model needs to be traced my its name, export its FX Graph.
method_graph = export(
    capture_pre_autograd_graph(model, inputs),
    inputs,
)

# Emit the traced methods into ET Program.
et_program = to_edge(method_graph).to_executorch()

# number of input sets to be verified
n_input = 10

# Input sets to be verified for each inference methods.
# To simplify, here we create same inputs for all methods.
inputs = {
    # Inference method name corresponding to its test cases.
    m_name: [
        # NOTE: executorch program needs torch.float, but here is torch.int
        [
            torch.randint(-5, 5, (2, 2), dtype=torch.int),
        ]
        for _ in range(n_input)
    ]
    for m_name in method_names
}

# Generate Test Suites
method_test_suites = [
    MethodTestSuite(
        method_name=m_name,
        test_cases=[
            MethodTestCase(
                inputs=input,
                expected_outputs=(getattr(model, m_name)(*input),),
            )
            for input in inputs[m_name]
        ],
    )
    for m_name in method_names
]

# Generate BundledProgram

bundled_program = BundledProgram(et_program, method_test_suites)
Raised Error
The input tensor tensor([[-2,  0],
        [-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
Cell In[1], line 72
     56 method_test_suites = [
     57     MethodTestSuite(
     58         method_name=m_name,
   (...)
     67     for m_name in method_names
     68 ]
     70 # Step 3: Generate BundledProgram
---> 72 bundled_program = create_bundled_program(program, method_test_suites)
File /executorch/devtools/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites)
    264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together.
    265
    266 Args:
   (...)
    271     The `BundledProgram` variable contains given ExecuTorch program and test cases.
    272 """
    274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name)
--> 276 assert_valid_bundle(program, method_test_suites)
    278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = []
    280 # Emit data and metadata of bundled tensor
File /executorch/devtools/bundled_program/core.py:219, in assert_valid_bundle(program, method_test_suites)
    215 # type of tensor input should match execution plan
    216 if type(cur_plan_test_inputs[j]) == torch.Tensor:
    217     # pyre-fixme[16]: Undefined attribute [16]: Item `bool` of `typing.Union[bool, float, int, torch._tensor.Tensor]`
    218     # has no attribute `dtype`.
--> 219     assert cur_plan_test_inputs[j].dtype == get_input_dtype(
    220         program, program_plan_id, j
    221     ), "The input tensor {} dtype shall be {}, but now is {}".format(
    222         cur_plan_test_inputs[j],
    223         get_input_dtype(program, program_plan_id, j),
    224         cur_plan_test_inputs[j].dtype,
    225     )
    226 elif type(cur_plan_test_inputs[j]) in (
    227     int,
    228     bool,
    229     float,
    230 ):
    231     assert type(cur_plan_test_inputs[j]) == get_input_type(
    232         program, program_plan_id, j
    233     ), "The input primitive dtype shall be {}, but now is {}".format(
    234         get_input_type(program, program_plan_id, j),
    235         type(cur_plan_test_inputs[j]),
    236     )
AssertionError: The input tensor tensor([[-2,  0],
        [-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32

Method name in BundleConfig does not exist.

Another common error would be the method name in any MethodTestSuite does not exist in Model. BundledProgram will raise error and show the non-exist method name:

import torch

from executorch.exir import to_edge
from executorch.devtools import BundledProgram

from executorch.devtools.bundled_program.config import MethodTestCase, MethodTestSuite
from torch.export import export


class Module(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.a = 3 * torch.ones(2, 2, dtype=torch.float)
        self.b = 2 * torch.ones(2, 2, dtype=torch.float)

    def forward(self, x):
        out_1 = torch.ones(2, 2, dtype=torch.float)
        out_2 = torch.ones(2, 2, dtype=torch.float)
        torch.mul(self.a, x, out=out_1)
        torch.add(out_1, self.b, out=out_2)
        return out_2


model = Module()
method_names = ["forward"]

inputs = (torch.ones(2, 2, dtype=torch.float),)

# Find each method of model needs to be traced my its name, export its FX Graph.
method_graph = export(
    capture_pre_autograd_graph(model, inputs),
    inputs,
)

# Emit the traced methods into ET Program.
et_program = to_edge(method_graph).to_executorch()

# number of input sets to be verified
n_input = 10

# Input sets to be verified for each inference methods.
# To simplify, here we create same inputs for all methods.
inputs = {
    # Inference method name corresponding to its test cases.
    m_name: [
        [
            torch.randint(-5, 5, (2, 2), dtype=torch.float),
        ]
        for _ in range(n_input)
    ]
    for m_name in method_names
}

# Generate Test Suites
method_test_suites = [
    MethodTestSuite(
        method_name=m_name,
        test_cases=[
            MethodTestCase(
                inputs=input,
                expected_outputs=(getattr(model, m_name)(*input),),
            )
            for input in inputs[m_name]
        ],
    )
    for m_name in method_names
]

# NOTE: MISSING_METHOD_NAME is not an inference method in the above model.
method_test_suites[0].method_name = "MISSING_METHOD_NAME"

# Generate BundledProgram
bundled_program = BundledProgram(et_program, method_test_suites)

Raised Error
All method names in bundled config should be found in program.execution_plan,          but {'MISSING_METHOD_NAME'} does not include.
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
Cell In[3], line 73
     70 method_test_suites[0].method_name = "MISSING_METHOD_NAME"
     72 # Generate BundledProgram
---> 73 bundled_program = create_bundled_program(program, method_test_suites)
File /executorch/devtools/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites)
    264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together.
    265
    266 Args:
   (...)
    271     The `BundledProgram` variable contains given ExecuTorch program and test cases.
    272 """
    274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name)
--> 276 assert_valid_bundle(program, method_test_suites)
    278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = []
    280 # Emit data and metadata of bundled tensor
File /executorch/devtools/bundled_program/core.py:141, in assert_valid_bundle(program, method_test_suites)
    138 method_name_of_program = {e.name for e in program.execution_plan}
    139 method_name_of_test_suites = {t.method_name for t in method_test_suites}
--> 141 assert method_name_of_test_suites.issubset(
    142     method_name_of_program
    143 ), f"All method names in bundled config should be found in program.execution_plan, \
    144      but {str(method_name_of_test_suites - method_name_of_program)} does not include."
    146 # check if method_tesdt_suites has been sorted in ascending alphabetical order of method name.
    147 for test_suite_id in range(1, len(method_test_suites)):
AssertionError: All method names in bundled config should be found in program.execution_plan,          but {'MISSING_METHOD_NAME'} does not include.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources