torch.nn.functional.binary_cross_entropy_with_logits¶
- torch.nn.functional.binary_cross_entropy_with_logits(input, target, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)[source]¶
Calculate Binary Cross Entropy between target and input logits.
See
BCEWithLogitsLoss
for details.- Parameters
input (Tensor) – Tensor of arbitrary shape as unnormalized scores (often referred to as logits).
target (Tensor) – Tensor of the same shape as input with values between 0 and 1
weight (Tensor, optional) – a manual rescaling weight if provided it’s repeated to match input tensor shape
size_average (bool, optional) – Deprecated (see
reduction
). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the fieldsize_average
is set toFalse
, the losses are instead summed for each minibatch. Ignored when reduce isFalse
. Default:True
reduce (bool, optional) – Deprecated (see
reduction
). By default, the losses are averaged or summed over observations for each minibatch depending onsize_average
. Whenreduce
isFalse
, returns a loss per batch element instead and ignoressize_average
. Default:True
reduction (str, optional) – Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed. Note:size_average
andreduce
are in the process of being deprecated, and in the meantime, specifying either of those two args will overridereduction
. Default:'mean'
pos_weight (Tensor, optional) – a weight of positive examples to be broadcasted with target. Must be a tensor with equal size along the class dimension to the number of classes. Pay close attention to PyTorch’s broadcasting semantics in order to achieve the desired operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of size [B, C, H, W] will apply different pos_weights to each element of the batch or [C, H, W] the same pos_weights across the batch. To apply the same positive weight along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1]. Default:
None
- Return type
Examples:
>>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> loss = F.binary_cross_entropy_with_logits(input, target) >>> loss.backward()