ChannelShuffle¶
- class torch.nn.ChannelShuffle(groups)[source]¶
Divides and rearranges the channels in a tensor.
This operation divides the channels in a tensor of shape into g groups as and shuffles them, while retaining the original tensor shape in the final output.
- Parameters
groups (int) – number of groups to divide channels in.
Examples:
>>> channel_shuffle = nn.ChannelShuffle(2) >>> input = torch.arange(1, 17, dtype=torch.float32).view(1, 4, 2, 2) >>> input tensor([[[[ 1., 2.], [ 3., 4.]], [[ 5., 6.], [ 7., 8.]], [[ 9., 10.], [11., 12.]], [[13., 14.], [15., 16.]]]]) >>> output = channel_shuffle(input) >>> output tensor([[[[ 1., 2.], [ 3., 4.]], [[ 9., 10.], [11., 12.]], [[ 5., 6.], [ 7., 8.]], [[13., 14.], [15., 16.]]]])