Shortcuts

# torch.min¶

torch.min(input) → Tensor

Returns the minimum value of all elements in the input tensor.

Warning

This function produces deterministic (sub)gradients unlike min(dim=0)

Parameters

input (Tensor) – the input tensor.

Example:

>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6750,  1.0857,  1.7197]])
>>> torch.min(a)
tensor(0.6750)

torch.min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor)

Returns a namedtuple (values, indices) where values is the minimum value of each row of the input tensor in the given dimension dim. And indices is the index location of each minimum value found (argmin).

If keepdim is True, the output tensors are of the same size as input except in the dimension dim where they are of size 1. Otherwise, dim is squeezed (see torch.squeeze()), resulting in the output tensors having 1 fewer dimension than input.

Note

If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned.

Parameters
• input (Tensor) – the input tensor.

• dim (int) – the dimension to reduce.

• keepdim (bool) – whether the output tensor has dim retained or not.

Keyword Arguments

out (tuple, optional) – the tuple of two output tensors (min, min_indices)

Example:

>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.6248,  1.1334, -1.1899, -0.2803],
[-1.4644, -0.2635, -0.3651,  0.6134],
[ 0.2457,  0.0384,  1.0128,  0.7015],
[-0.1153,  2.9849,  2.1458,  0.5788]])
>>> torch.min(a, 1)
torch.return_types.min(values=tensor([-1.1899, -1.4644,  0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))

torch.min(input, other, *, out=None) → Tensor ## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials