Shortcuts

# torch.fft.fftfreq¶

torch.fft.fftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

Computes the discrete Fourier Transform sample frequencies for a signal of size n.

Note

By convention, fft() returns positive frequency terms first, followed by the negative frequencies in reverse order, so that f[-i] for all $0 < i \leq n/2$ in Python gives the negative frequency terms. For an FFT of length n and with inputs spaced in length unit d, the frequencies are:

f = [0, 1, ..., (n - 1) // 2, -(n // 2), ..., -1] / (d * n)


Note

For even lengths, the Nyquist frequency at f[n/2] can be thought of as either negative or positive. fftfreq() follows NumPy’s convention of taking it to be negative.

Parameters
• n (int) – the FFT length

• d (float, optional) – The sampling length scale. The spacing between individual samples of the FFT input. The default assumes unit spacing, dividing that result by the actual spacing gives the result in physical frequency units.

Keyword Arguments

Example

>>> torch.fft.fftfreq(5)
tensor([ 0.0000,  0.2000,  0.4000, -0.4000, -0.2000])


For even input, we can see the Nyquist frequency at f[2] is given as negative:

>>> torch.fft.fftfreq(4)
tensor([ 0.0000,  0.2500, -0.5000, -0.2500])


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials