Shortcuts

# torch.bernoulli¶

torch.bernoulli(input, *, generator=None, out=None)

Draws binary random numbers (0 or 1) from a Bernoulli distribution.

The input tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in input have to be in the range: $0 \leq \text{input}_i \leq 1$.

The $\text{i}^{th}$ element of the output tensor will draw a value $1$ according to the $\text{i}^{th}$ probability value given in input.

$\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})$

The returned out tensor only has values 0 or 1 and is of the same shape as input.

out can have integral dtype, but input must have floating point dtype.

Parameters

input (Tensor) – the input tensor of probability values for the Bernoulli distribution

Keyword Arguments
• generator (torch.Generator, optional) – a pseudorandom number generator for sampling

• out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.empty(3, 3).uniform_(0, 1)  # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737,  0.0950,  0.3609],
[ 0.7148,  0.0289,  0.2676],
[ 0.9456,  0.8937,  0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1.,  0.,  0.],
[ 0.,  0.,  0.],
[ 1.,  1.,  1.]])

>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1.,  1.,  1.],
[ 1.,  1.,  1.],
[ 1.,  1.,  1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0.,  0.,  0.],
[ 0.,  0.,  0.],
[ 0.,  0.,  0.]])

## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials