Source code for torch.jit

import torch._C
import torch._jit_internal as _jit_internal
import torch.backends.cudnn as cudnn
import torch.jit.annotations
import torch.testing
import torch.jit._recursive

from torch.jit._recursive import ScriptMethodStub
from torch._jit_internal import _qualified_name
from torch.autograd import Variable, function
from torch.jit.frontend import get_jit_class_def, get_jit_def, get_default_args
from torch.nn import Module
from torch.serialization import validate_cuda_device
from torch._six import PY2, PY37, with_metaclass, string_classes, get_function_from_type
from ..nn.modules.utils import _single, _pair, _triple, _quadruple, \
from torch.utils import set_module

import collections
import contextlib
import copy
import functools
import inspect
import math
import os
import pickle
import re
import sys
import textwrap
import warnings

from collections import OrderedDict

# These are imported so users can access them from the `torch.jit` module
from torch._jit_internal import Final, _overload, _overload_method
from torch._jit_internal import ignore, export, unused

if sys.version_info[0] > 2:
    import pathlib

def _parse_env(name, default, true_message, false_message):
    value = os.environ.get(name)
    if value is None:
        return default
    if value.lower() in {'1', 'true', 'yes'}:
        return True
    elif value.lower() in {'0', 'false', 'no'}:
        return False
    if value == '1v':
        return True
    elif value == '0v':
        return False
    raise ValueError('Unknown setting of {}. Try using 0 or 1.'.format(name))

_enabled = _parse_env('PYTORCH_JIT', True, "> Using PyTorch JIT", "> PyTorch JIT DISABLED")
_flatten = torch._C._jit_flatten
_unflatten = torch._C._jit_unflatten
_jit_script_class_compile = torch._C._jit_script_class_compile

# The Python CompilationUnit. All functions and modules defined in Python will
# live in here. It's defined in Python because doing in cpp creates static
# destruction order issues.
_python_cu = torch._C.CompilationUnit()

Future = torch._C.Future
set_module(Future, "torch.jit")
_fork = torch._C.fork
_wait = torch._C.wait

if _enabled:
    Attribute = collections.namedtuple('Attribute', ['value', 'type'])
    def Attribute(value, type):
        return value

def optimized_execution(should_optimize):
    A context manager that controls whether the JIT's executor will run
    optimizations before executing a function.
    stored_flag = torch._C._get_graph_executor_optimize()

DEFAULT_EXTRA_FILES_MAP = torch._C.ExtraFilesMap()

[docs]def save(m, f, _extra_files=DEFAULT_EXTRA_FILES_MAP): """ Save an offline version of this module for use in a separate process. The saved module serializes all of the methods, submodules, parameters, and attributes of this module. It can be loaded into the C++ API using ``torch::jit::load(filename)`` or into the Python API with :func:`torch.jit.load <torch.jit.load>`. To be able to save a module, it must not make any calls to native Python functions. This means that all submodules must be subclasses of ``torch.jit.ScriptModule`` as well. .. DANGER:: All modules, no matter their device, are always loaded onto the CPU during loading. This is different from :func:`load <torch.jit.load>`'s semantics and may change in the future. Arguments: m: A ScriptModule to save. f: A file-like object (has to implement write and flush) or a string containing a file name. _extra_files: Map from filename to contents which will be stored as part of 'f'. .. warning:: If you are using Python 2, ```` does NOT support ``StringIO.StringIO`` as a valid file-like object. This is because the write method should return the number of bytes written; ``StringIO.write()`` does not do this. Please use something like ``io.BytesIO`` instead. Example: .. testcode:: import torch import io class MyModule(torch.nn.Module): def forward(self, x): return x + 10 m = torch.jit.script(MyModule()) # Save to file, '') # This line is equivalent to the previous"") # Save to io.BytesIO buffer buffer = io.BytesIO(), buffer) # Save with extra files extra_files = torch._C.ExtraFilesMap() extra_files['foo.txt'] = 'bar', '', _extra_files=extra_files) """ if isinstance(f, str) or \ (sys.version_info[0] == 2 and isinstance(f, unicode)) or \ (sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):, _extra_files=_extra_files) else: ret = m.save_to_buffer(_extra_files=_extra_files) f.write(ret)
[docs]def load(f, map_location=None, _extra_files=DEFAULT_EXTRA_FILES_MAP): r""" Load a :class:`ScriptModule` or :class:`ScriptFunction` previously saved with :func:` <>` All previously saved modules, no matter their device, are first loaded onto CPU, and then are moved to the devices they were saved from. If this fails (e.g. because the run time system doesn't have certain devices), an exception is raised. Arguments: f: a file-like object (has to implement read, readline, tell, and seek), or a string containing a file name map_location (string or torch.device): A simplified version of ``map_location`` in ```` used to dynamically remap storages to an alternative set of devices. _extra_files (dictionary of filename to content): The extra filenames given in the map would be loaded and their content would be stored in the provided map. Returns: A :class:`ScriptModule` object. Example: .. testcode:: import torch import io torch.jit.load('') # Load ScriptModule from io.BytesIO object with open('', 'rb') as f: buffer = io.BytesIO( # Load all tensors to the original device torch.jit.load(buffer) # Load all tensors onto CPU, using a device torch.jit.load(buffer, map_location=torch.device('cpu')) # Load all tensors onto CPU, using a string torch.jit.load(buffer, map_location='cpu') # Load with extra files. extra_files = torch._C.ExtraFilesMap() extra_files['foo.txt'] = 'bar' torch.jit.load('', _extra_files=extra_files) print(extra_files['foo.txt']) .. testoutput:: :hide: ... .. testcleanup:: import os os.remove("") """ if isinstance(f, string_classes): if not os.path.exists(f): raise ValueError("The provided filename {} does not exist".format(f)) if isinstance(map_location, string_classes): map_location = torch.device(map_location) elif not (map_location is None or isinstance(map_location, torch.device)): raise ValueError("map_location should be either None, string or torch.device, " "but got type: " + str(type(map_location))) if (str(map_location).startswith('cuda')): validate_cuda_device(map_location) cu = torch._C.CompilationUnit() if isinstance(f, str) or \ (sys.version_info[0] == 2 and isinstance(f, unicode)) or \ (sys.version_info[0] == 3 and isinstance(f, pathlib.Path)): cpp_module = torch._C.import_ir_module(cu, f, map_location, _extra_files) else: cpp_module = torch._C.import_ir_module_from_buffer(cu,, map_location, _extra_files) # TODO: Pretty sure this approach loses ConstSequential status and such return torch.jit._recursive.wrap_cpp_module(cpp_module)
def export_opnames(m): r""" Returns a list of operator names of a script module and its submodules """ return torch._C._export_opnames(m._c) def _get_trace_graph(f, args=(), kwargs=None, _force_outplace=False, return_inputs=False, _return_inputs_states=False): """ Trace a function or model, returning a tuple consisting of the both the *trace* of an execution, as well as the original return value. If return_inputs, also returns the trace inputs as part of the tuple Tracing is guaranteed not to change the semantics of the function/module that is traced. Arguments: f (torch.nn.Module or function): the function or module to be traced. args (tuple or Tensor): the positional arguments to pass to the function/module to be traced. A non-tuple is assumed to be a single positional argument to be passed to the model. kwargs (dict): the keyword arguments to pass to the function/module to be traced. Example (trace a cell): .. testcode:: trace = torch.jit.trace(nn.LSTMCell(), (input, hidden)) """ if kwargs is None: kwargs = {} if not isinstance(args, tuple): args = (args,) outs = ONNXTracedModule(f, _force_outplace, return_inputs, _return_inputs_states)(*args, **kwargs) return outs def _unique_state_dict(module, keep_vars=False): # since always creates a new torch.Tensor instance, # id(v) doesn't work with it. So we always get the Parameter or Buffer # as values, and deduplicate the params using Parameters and Buffers state_dict = module.state_dict(keep_vars=True) filtered_dict = type(state_dict)() seen_ids = set() for k, v in state_dict.items(): if id(v) in seen_ids: continue seen_ids.add(id(v)) if keep_vars: filtered_dict[k] = v else: filtered_dict[k] = return filtered_dict def _create_interpreter_name_lookup_fn(frames_up=1): def _get_interpreter_name_for_var(var): frame = inspect.currentframe() i = 0 while i < frames_up + 1: frame = frame.f_back i += 1 f_locals = frame.f_locals f_globals = frame.f_globals for k, v in f_locals.items(): if isinstance(v, torch.Tensor) and var is v: return k if k != 'self' else '' for k, v in f_globals.items(): if isinstance(v, torch.Tensor) and var is v: return k if k != 'self' else '' return '' return _get_interpreter_name_for_var class ONNXTracedModule(Module): def __init__(self, inner, force_outplace=False, return_inputs=False, return_inputs_states=False): super(ONNXTracedModule, self).__init__() # inner may be a Module, or it may be an arbitrary callable # If it's a Module, we get its parameters automatically, which lets # us avoid a special casing functions versus modules. self.inner = inner self._force_outplace = force_outplace self._return_inputs = return_inputs self._return_inputs_states = return_inputs_states def forward(self, *args): in_vars, in_desc = _flatten(args) # NOTE: use full state, because we need it for BatchNorm export # This differs from the compiler path, which doesn't support it at the moment. module_state = list(_unique_state_dict(self, keep_vars=True).values()) ret_inputs = [] inputs_states = [] outs = [] def wrapper(*args): trace_inputs = _unflatten(args[:len(in_vars)], in_desc) ret_inputs.append(tuple(x.clone(memory_format=torch.preserve_format) for x in args)) if self._return_inputs_states: inputs_states.append(_unflatten(args[:len(in_vars)], in_desc)) outs.append(self.inner(*trace_inputs)) if self._return_inputs_states: inputs_states[0] = (inputs_states[0], trace_inputs) out_vars, _ = _flatten(outs) if len(out_vars) == 1: return out_vars[0] else: return tuple(out_vars) graph, out = torch._C._create_graph_by_tracing( wrapper, in_vars + module_state, _create_interpreter_name_lookup_fn(), self._force_outplace, ) if self._return_inputs: return graph, outs[0], ret_inputs[0] if self._return_inputs_states: return graph, outs[0], inputs_states[0] else: return graph, outs[0] def _clone_inputs(args): def clone_input(a): if a is None: return None elif isinstance(a, torch.Tensor): # TODO: figure out one liner to .clone() and set requires_grad v = Variable(, requires_grad=a.requires_grad) if a.grad is not None: v.grad = clone_input(v.grad) return v else: return a.clone(memory_format=torch.preserve_format) return function._nested_map(lambda x: isinstance(x, torch.Tensor), clone_input, condition_msg="tensors")(args) # This is purely for developer debugging. We are not going to advertise it. _JIT_DUMP = os.environ.get('PYTORCH_JIT_DUMP', False) _JIT_TIME = os.environ.get('PYTORCH_JIT_TIME', False) # CUDA-only timing _JIT_DISABLE = os.environ.get('PYTORCH_JIT_DISABLE', False) _JIT_STATS = os.environ.get('PYTORCH_JIT_STATS', False) def _dump_trace(trace_name, pass_name, input_key, trace): if not _JIT_DUMP: return import torch.contrib._graph_vis as graph_vis filename = "{}_{}".format(trace_name, pass_name) # TODO: Also paste out the backtrace when the trace was compiled # (and maybe also when it was run?) with open(filename + ".ir", "w") as f: f.write("Input key: {}\n\n{}".format(input_key, str(trace))) graph_vis.write(trace.graph(), filename + ".html") @contextlib.contextmanager def _time(trace_name, name, time=True): if (not _JIT_TIME and not time) or not torch.cuda.is_available(): yield return stream = torch.cuda.current_stream() start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) stream.record_event(start) try: yield finally: stream.record_event(end) end.synchronize() print("{} {} time: {} ms".format(trace_name, name, start.elapsed_time(end))) def verify(model, args, loss_fn=torch.sum, devices=None): """ Verify that a JIT compiled model has the same behavior as its uncompiled version along with its backwards pass. If your model returns multiple outputs, you must also specify a `loss_fn` to produce a loss for which the backwards will be computed. This function has side-effects (e.g., it executes your model / saves and loads parameters), so don't expect the model to come out exactly the same as what you passed in. Arguments: model (compiled torch.nn.Module or function): the module/function to be verified. The module/function definition MUST have been decorated with `@torch.jit.compile`. args (tuple or Tensor): the positional arguments to pass to the compiled function/module to be verified. A non-tuple is assumed to be a single positional argument to be passed to the model. loss_fn (function, optional): the loss function to be applied to the output of the model, before backwards is invoked. By default, we assume that a model returns a single result, and we :func:`torch.sum` before calling backwards; if this is inappropriate, you can pass your own loss function. Note that if a model returns a tuple of results, these are passed as separate positional arguments to `loss_fn`. devices (iterable of device IDs, optional): the GPU devices which the compiled module will be run on. This determines the RNG state we must save when running both compiled and uncompiled versions of the model. """ # TODO: In principle, we track device information in our trace, so it # should be possible to check if our execution actually obeyed the 'devices' # the user provided. # TODO: Consider adding a utility function to torch.jit to test # for this case if not isinstance(model, torch._C.CompiledFunction): raise TypeError("Cannot verify an uncompiled module. Add @torch.jit.compile to compile it") is_module = isinstance(model, Module) if not isinstance(args, tuple): args = (args,) saved_args = _clone_inputs(args) if is_module: saved_state = copy.deepcopy(model.state_dict()) def run_fwd_bwd(args, force_trace=False, assert_compiled=False): params = list(model.parameters()) if is_module else [] in_vars, _ = _flatten((args, params)) # We use a special API to reset the trace and compile it from scratch. compiled_fn = model if force_trace: compiled_fn.clear_cache() if assert_compiled: hits = compiled_fn.hits out = model(*args) if assert_compiled and compiled_fn.hits == hits: raise RuntimeError("failed to use the compiled function") if not isinstance(out, tuple): out = (out, ) if loss_fn == torch.sum and len(out) != 1: raise ValueError(("Model returns {} outputs, but default loss function " "(torch.sum) can only handle a single output").format(len(out))) out_vars, _ = _flatten(out) saved_outs = [ for v in out_vars] loss = loss_fn(*out) grads = torch.autograd.grad([loss], in_vars) # TODO: I'm not sure if the clone here is necessary but it is safer saved_grads = [ for v in grads] return (saved_outs, saved_grads) with torch.random.fork_rng(devices, _caller="torch.jit.verify"): uncompiled_outs, uncompiled_grads = run_fwd_bwd(args, force_trace=True) assert model.has_trace_for(*args) if is_module: model.load_state_dict(saved_state) compiled_outs, compiled_grads = run_fwd_bwd(args, assert_compiled=True) _verify_equal(uncompiled_outs, compiled_outs) _verify_equal(uncompiled_grads, compiled_grads) def _verify_equal(xs, ys): for x, y in zip(xs, ys): if x.sub(y).abs().max() > 1e-6: raise RuntimeError("JIT and real computation mismatch") def indent(s): return '\n'.join(['\t' + line for line in s.splitlines()]) class TracingCheckError(Exception): def __init__(self, graph_diff_error, tensor_compare_error, extra_msg=None): self.message = 'Tracing failed sanity checks!\n' if extra_msg is not None: self.message += extra_msg + '\n' if graph_diff_error is not None: self.message += 'ERROR: Graphs differed across invocations!\n' self.message += indent(graph_diff_error) + '\n' if tensor_compare_error is not None: self.message += 'ERROR: Tensor-valued Constant nodes differed in value ' \ 'across invocations. This often indicates that the tracer has' \ ' encountered untraceable code.\n' self.message += indent(tensor_compare_error) + '\n' super(TracingCheckError, self).__init__(self.message) # Check the traced module against a set of user-provided validation inputs @torch.no_grad() def _check_trace(check_inputs, func, traced_func, check_tolerance, force_outplace, is_trace_module, _module_class): # Note: tracing is independent of optimizations, which consume the trace for inputs in check_inputs: if isinstance(inputs, torch.Tensor): inputs = (inputs,) if is_trace_module: copied_dict = {} for name, data in inputs.items(): copied_dict[name] = _clone_inputs(data) check_mod = torch.jit.trace_module( func.__self__ if hasattr(func, '__self__') else func, copied_dict, check_trace=False, _force_outplace=force_outplace, _module_class=_module_class, _compilation_unit=torch._C.CompilationUnit(), ) check_mod_func = check_mod._c._get_method( inputs = inputs[] if isinstance(inputs, (torch.Tensor, dict)): inputs = (inputs,) else: check_mod = torch.jit.trace( func, _clone_inputs(inputs), check_trace=False, _force_outplace=force_outplace, _module_class=_module_class, ) check_mod_func = check_mod def graph_diagnostic_info(): mod_canonicalized = torch._C._jit_pass_canonicalize(traced_func.graph) torch._C._jit_pass_inline(mod_canonicalized) torch._C._jit_pass_erase_shape_information(mod_canonicalized) mod_str = str(mod_canonicalized) mod_str = re.sub(r'___torch_mangle_[0-9]+\.', '', mod_str) check_canonicalized = torch._C._jit_pass_canonicalize(check_mod_func.graph) torch._C._jit_pass_inline(check_canonicalized) torch._C._jit_pass_erase_shape_information(check_canonicalized) check_str = str(check_canonicalized) check_str = re.sub(r'___torch_mangle_[0-9]+\.', '', check_str) graph_diff_errors = None if mod_str != check_str: import difflib graph_diff = difflib.ndiff(mod_str.splitlines(True), check_str.splitlines(True)) graph_diff_errors = 'Graph diff:\n' + indent(''.join(graph_diff)) + '\n' for n_mod, n_check in zip(mod_canonicalized.nodes(), check_canonicalized.nodes()): if str(n_mod) != str(n_check): graph_diff_errors += 'First diverging operator:\n' node_diff = difflib.ndiff(str(n_mod).splitlines(True), str(n_check).splitlines(True)) source_printout = 'Node diff:\n' + indent(''.join(node_diff)) + '\n' mod_stack = n_mod.sourceRange() if mod_stack: source_printout += 'Trace source location:\n' + indent(mod_stack) + '\n' check_stack = n_check.sourceRange() if check_stack: source_printout += 'Check source location:\n' + indent(check_stack) + '\n' graph_diff_errors += source_printout break # For now, only print out the first pair of nodes that diverges tensor_compare_errors = None # Check Tensor-valued constant nodes for n_mod, n_check in zip(mod_canonicalized.nodes(), check_canonicalized.nodes()): if n_mod.kind() != n_check.kind(): break # Graphs have already diverged if n_mod.kind() == 'prim::Constant' and not (n_mod.mustBeNone() or n_check.mustBeNone()): if not n_mod.hasAttribute('value'): continue if n_mod.kindOf('value') != 't' or n_check.kindOf('value') != 't': continue mod_tensor_val = n_mod.t('value') check_tensor_val = n_check.t('value') try: torch.testing.assert_allclose(mod_tensor_val, check_tensor_val) except (RuntimeError, AssertionError) as e: if tensor_compare_errors is None: tensor_compare_errors = '' tensor_compare_errors += 'Node:\n' + indent(str(n_mod)) + '\n' compare_stack = n_mod.sourceRange() if compare_stack: tensor_compare_errors += 'Source Location:\n' + indent(compare_stack) + '\n' tensor_compare_errors += 'Comparison exception: ' + indent(str(e)) break # For now, only print the first diverging pair return graph_diff_errors, tensor_compare_errors def wrap_retval(x): return x if isinstance(x, tuple) else (x,) def run_mod_and_filter_tensor_outputs(mod, inputs, running_what): try: outs = wrap_retval(mod(*_clone_inputs(inputs))) outs = [out for out in outs if isinstance(out, torch.Tensor)] return outs except Exception as e: raise TracingCheckError(*graph_diagnostic_info(), extra_msg='Encountered an exception while running the ' + running_what + ' with test inputs.\nException:\n' + indent(str(e))) has_warned = [False] def maybe_warn_nondeterministic(): if has_warned[0]: return has_warned[0] = True nondeterm_ops = [op for op in traced_func.graph.nodes() if op.isNondeterministic()] if len(nondeterm_ops) > 0: nondeterministic_ops_warning = "Trace had nondeterministic nodes. " nondeterministic_ops_warning += "Did you forget call .eval() on your model? Nodes:\n" nondeterministic_ops_warning += "\n".join([indent(str(op)) for op in nondeterm_ops][:20]) nondeterministic_ops_warning += "\nThis may cause errors in trace checking. To disable trace checking,"\ " pass check_trace=False to torch.jit.trace()" warnings.warn(nondeterministic_ops_warning, category=TracerWarning, stacklevel=5) def compare_outputs(original, reference, match_what): all_ok = True for i, (orig, ref) in enumerate(zip(original, reference)): try: torch.testing.assert_allclose(orig.double(), ref.double(), rtol=check_tolerance, atol=torch.testing._get_default_tolerance(orig, ref)[1]) except AssertionError as e: maybe_warn_nondeterministic() warnings.warn('Output nr ' + str(i + 1) + '. of the traced function does not match ' 'the corresponding output of the ' + match_what + '. Detailed error:\n' + str(e), category=TracerWarning, stacklevel=4) all_ok = False return all_ok traced_outs = run_mod_and_filter_tensor_outputs(traced_func, inputs, 'trace') fn_outs = run_mod_and_filter_tensor_outputs(func, inputs, 'Python function') if compare_outputs(traced_outs, fn_outs, 'Python function'): check_outs = run_mod_and_filter_tensor_outputs(check_mod_func, inputs, 'repeated trace') compare_outputs(traced_outs, check_outs, 'repeated trace') diag_info = graph_diagnostic_info() if any(info is not None for info in diag_info): raise TracingCheckError(*diag_info) class TracerWarning(Warning): @staticmethod def ignore_lib_warnings(): # We ignore warnings from all submodules excluding the JIT, because we need them e.g. for _check_trace warnings.filterwarnings('ignore', category=TracerWarning, module='torch.(?!jit)') # We ignore the tracer warnings coming form inside the library, because all our shape # checks in nn will trigger them. TracerWarning.ignore_lib_warnings() torch._C._tracer_warn_use_python() def make_tuple(example_inputs): if isinstance(example_inputs, (torch.Tensor, dict)): return (example_inputs,) # done primarily so that weird iterables fail here and not pybind11 code if not isinstance(example_inputs, tuple): return tuple(example_inputs) return example_inputs def make_module(mod, _module_class, _compilation_unit): if isinstance(mod, ScriptModule): return mod elif torch._jit_internal.module_has_exports(mod): exported = [] for name in dir(mod): item = getattr(mod, name, None) if torch._jit_internal.get_torchscript_modifier(item) is _jit_internal.FunctionModifiers.EXPORT: exported.append(name) stubs = [] for method in exported: stubs.append(torch.jit._recursive.make_stub_from_method(mod, method)) return torch.jit._recursive.create_script_module_for_tracing(mod, stubs) else: if _module_class is None: _module_class = TopLevelTracedModule return _module_class(mod, _compilation_unit=_compilation_unit) def wrap_check_inputs(check_inputs): if check_inputs is None: return None return [{'forward' : c} for c in check_inputs]
[docs]def trace(func, example_inputs, optimize=None, check_trace=True, check_inputs=None, check_tolerance=1e-5, _force_outplace=False, _module_class=None, _compilation_unit=_python_cu): """ Trace a function and return an executable or :class:`ScriptFunction` that will be optimized using just-in-time compilation. Tracing is ideal for code that operates only on ``Tensor``\\s and lists, dictionaries, and tuples of ``Tensor``\\s. Using ``torch.jit.trace`` and :func:`torch.jit.trace_module<torch.jit.trace_module>`, you can turn an existing module or Python function into a TorchScript :class:`ScriptFunction` or :class:`ScriptModule`. You must provide example inputs, and we run the function, recording the operations performed on all the tensors. * The resulting recording of a standalone function produces :class:`ScriptFunction`. * The resulting recording of ``forward`` function of ``nn.Module`` or ``nn.Module`` produces :class:`ScriptModule`. This module also contains any parameters that the original module had as well. .. warning:: Tracing only correctly records functions and modules which are not data dependent (e.g., do not have conditionals on data in tensors) and do not have any untracked external dependencies (e.g., perform input/output or access global variables). Tracing only records operations done when the given function is run on the given tensors. Therefore, the returned :class:`ScriptModule` will always run the same traced graph on any input. This has some important implications when your module is expected to run different sets of operations, depending on the input and/or the module state. For example, * Tracing will not record any control-flow like if-statements or loops. When this control-flow is constant across your module, this is fine and it often inlines the control-flow decisions. But sometimes the control-flow is actually part of the model itself. For instance, a recurrent network is a loop over the (possibly dynamic) length of an input sequence. * In the returned :class:`ScriptModule`, operations that have different behaviors in ``training`` and ``eval`` modes will always behave as if it is in the mode it was in during tracing, no matter which mode the :class:`ScriptModule` is in. In cases like these, tracing would not be appropriate and :func:`scripting <torch.jit.script>` is a better choice. If you trace such models, you may silently get incorrect results on subsequent invocations of the model. The tracer will try to emit warnings when doing something that may cause an incorrect trace to be produced. Arguments: func (callable or torch.nn.Module): A Python function or ``torch.nn.Module`` that will be run with ``example_inputs``. arguments and returns to ``func`` must be tensors or (possibly nested) tuples that contain tensors. When a module is passed to :func:`torch.jit.trace <torch.jit.trace>`, only the ``forward`` method is run and traced (see :func:`torch.jit.trace <torch.jit.trace_module>` for details). example_inputs (tuple): A tuple of example inputs that will be passed to the function while tracing. The resulting trace can be run with inputs of different types and shapes assuming the traced operations support those types and shapes. ``example_inputs`` may also be a single Tensor in which case it is automatically wrapped in a tuple. Keyword arguments: check_trace (``bool``, optional): Check if the same inputs run through traced code produce the same outputs. Default: ``True``. You might want to disable this if, for example, your network contains non- deterministic ops or if you are sure that the network is correct despite a checker failure. check_inputs (list of tuples, optional): A list of tuples of input arguments that should be used to check the trace against what is expected. Each tuple is equivalent to a set of input arguments that would be specified in ``example_inputs``. For best results, pass in a set of checking inputs representative of the space of shapes and types of inputs you expect the network to see. If not specified, the original ``example_inputs`` are used for checking check_tolerance (float, optional): Floating-point comparison tolerance to use in the checker procedure. This can be used to relax the checker strictness in the event that results diverge numerically for a known reason, such as operator fusion. Returns: If ``callable`` is ``nn.Module`` or ``forward`` of ``nn.Module``, ``trace`` returns a :class:`ScriptModule` object with a single ``forward`` method containing the traced code. The returned :class:`ScriptModule` will have the same set of sub-modules and parameters as the original ``nn.Module``. If ``callable`` is a standalone function, ``trace`` returns :class:`ScriptFunction` Example (tracing a function): .. testcode:: import torch def foo(x, y): return 2 * x + y # Run `foo` with the provided inputs and record the tensor operations traced_foo = torch.jit.trace(foo, (torch.rand(3), torch.rand(3))) # `traced_foo` can now be run with the TorchScript interpreter or saved # and loaded in a Python-free environment Example (tracing an existing module):: import torch import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(1, 1, 3) def forward(self, x): return self.conv(x) n = Net() example_weight = torch.rand(1, 1, 3, 3) example_forward_input = torch.rand(1, 1, 3, 3) # Trace a specific method and construct `ScriptModule` with # a single `forward` method module = torch.jit.trace(n.forward, example_forward_input) # Trace a module (implicitly traces `forward`) and construct a # `ScriptModule` with a single `forward` method module = torch.jit.trace(n, example_forward_input) """ if not _enabled: return func if optimize is not None: warnings.warn("`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead") if isinstance(func, torch.jit.ScriptModule): # it is hard to trace it because the forward method on ScriptModule is already defined, so it # would result in an error. warnings.warn('The input to trace is already a ScriptModule, tracing it is a no-op. Returning the object as is.') return func if isinstance(func, torch.nn.Module): return trace_module(func, {'forward': example_inputs}, None, check_trace, wrap_check_inputs(check_inputs), check_tolerance, _force_outplace, _module_class) if (hasattr(func, '__self__') and isinstance(func.__self__, torch.nn.Module) and func.__name__ == 'forward'): return trace_module(func.__self__, {'forward': example_inputs}, None, check_trace, wrap_check_inputs(check_inputs), check_tolerance, _force_outplace, _module_class) # Special case for common case of passing a single Tensor if isinstance(example_inputs, (torch.Tensor, dict)): example_inputs = (example_inputs,) # done primarily so that weird iterables fail here and not pybind11 code elif not isinstance(example_inputs, tuple): example_inputs = tuple(example_inputs) var_lookup_fn = _create_interpreter_name_lookup_fn(0) if (hasattr(func, '__self__') and isinstance(func.__self__, torch.nn.Module)): raise AttributeError("trace doesn't support compiling individual module's functions.\n" "Please use trace_module") name = _qualified_name(func) traced = torch._C._create_function_from_trace(name, func, example_inputs, var_lookup_fn, _force_outplace) # Check the trace against new traces created from user-specified inputs if check_trace: if check_inputs is not None: _check_trace(check_inputs, func, traced, check_tolerance, _force_outplace, False, _module_class) else: _check_trace([example_inputs], func, traced, check_tolerance, _force_outplace, False, _module_class) return traced
_trace_module_map = None
[docs]def trace_module(mod, inputs, optimize=None, check_trace=True, check_inputs=None, check_tolerance=1e-5, _force_outplace=False, _module_class=None, _compilation_unit=_python_cu): """ Trace a module and return an executable :class:`ScriptModule` that will be optimized using just-in-time compilation. When a module is passed to :func:`torch.jit.trace <torch.jit.trace>`, only the ``forward`` method is run and traced. With ``trace_module``, you can specify a dictionary of method names to example inputs to trace (see the ``example_inputs``) argument below. See :func:`torch.jit.trace <torch.jit.trace>` for more information on tracing. Arguments: mod (torch.nn.Module): A ``torch.nn.Module`` containing methods whose names are specified in ``example_inputs``. The given methods will be compiled as a part of a single `ScriptModule`. example_inputs (dict): A dict containing sample inputs indexed by method names in ``mod``. The inputs will be passed to methods whose names correspond to inputs' keys while tracing. ``{ 'forward' : example_forward_input, 'method2': example_method2_input}`` Keyword arguments: check_trace (``bool``, optional): Check if the same inputs run through traced code produce the same outputs. Default: ``True``. You might want to disable this if, for example, your network contains non- deterministic ops or if you are sure that the network is correct despite a checker failure. check_inputs (list of dicts, optional): A list of dicts of input arguments that should be used to check the trace against what is expected. Each tuple is equivalent to a set of input arguments that would be specified in ``example_inputs``. For best results, pass in a set of checking inputs representative of the space of shapes and types of inputs you expect the network to see. If not specified, the original ``example_inputs`` are used for checking check_tolerance (float, optional): Floating-point comparison tolerance to use in the checker procedure. This can be used to relax the checker strictness in the event that results diverge numerically for a known reason, such as operator fusion. Returns: A :class:`ScriptModule` object with a single ``forward`` method containing the traced code. When ``func`` is a ``torch.nn.Module``, the returned :class:`ScriptModule` will have the same set of sub-modules and parameters as ``func``. Example (tracing a module with multiple methods):: import torch import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(1, 1, 3) def forward(self, x): return self.conv(x) def weighted_kernel_sum(self, weight): return weight * self.conv.weight n = Net() example_weight = torch.rand(1, 1, 3, 3) example_forward_input = torch.rand(1, 1, 3, 3) # Trace a specific method and construct `ScriptModule` with # a single `forward` method module = torch.jit.trace(n.forward, example_forward_input) # Trace a module (implicitly traces `forward`) and construct a # `ScriptModule` with a single `forward` method module = torch.jit.trace(n, example_forward_input) # Trace specific methods on a module (specified in `inputs`), constructs # a `ScriptModule` with `forward` and `weighted_kernel_sum` methods inputs = {'forward' : example_forward_input, 'weighted_kernel_sum' : example_weight} module = torch.jit.trace_module(n, inputs) """ if not _enabled: return mod if optimize is not None: warnings.warn("`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead") var_lookup_fn = _create_interpreter_name_lookup_fn(0) if not isinstance(mod, torch.nn.Module): raise AttributeError("expected torch.nn.Module as the first argument") if not isinstance(inputs, dict): raise AttributeError("expected a dictionary of (method_name, input) pairs") old_module_map = torch.jit._trace_module_map try: torch.jit._trace_module_map = {} def register_submods(mod, prefix): for name, child in mod.named_children(): submod_qualname = prefix + '.' + name torch.jit._trace_module_map[child] = submod_qualname register_submods(child, submod_qualname) torch.jit._trace_module_map['__module'] = mod register_submods(mod, '__module') module = make_module(mod, _module_class, _compilation_unit) for method_name, example_inputs in inputs.items(): # this is needed since Module.__call__ sets up some extra tracing func = mod if method_name == "forward" else getattr(mod, method_name) example_inputs = make_tuple(example_inputs) module._c._create_method_from_trace(method_name, func, example_inputs, var_lookup_fn, _force_outplace) check_trace_method = module._c._get_method(method_name) # Check the trace against new traces created from user-specified inputs if check_trace: if check_inputs is not None: _check_trace(check_inputs, func, check_trace_method, check_tolerance, _force_outplace, True, _module_class) else: _check_trace([inputs], func, check_trace_method, check_tolerance, _force_outplace, True, _module_class) finally: torch.jit._trace_module_map = old_module_map return module
class CompilationUnit(object): def __init__(self, lang=None, _frames_up=0): self._c = torch._C.CompilationUnit() if lang is not None: self.define(lang, _frames_up=_frames_up + 1) def define(self, lang, rcb=None, _frames_up=0): if not rcb: rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1) self._c.define(lang, rcb) def __getattr__(self, attr): r = self._c.find_function(attr) if r is None: raise AttributeError("'CompilationUnit' has no attribute '{}'".format(attr)) return r def _try_get_dispatched_fn(fn): if not callable(fn): return None return _jit_internal.boolean_dispatched.get(fn) def _try_get_overloaded_fn(mod, field): return mod._overloads.get(field, None) if isinstance(mod, ScriptModule) else None class ScriptWarning(Warning): pass @contextlib.contextmanager def _disable_emit_hooks(): hooks = torch._C._jit_get_emit_hooks() torch._C._jit_set_emit_hooks(None, None) yield torch._C._jit_set_emit_hooks(hooks[0], hooks[1]) # ScriptClasses must be new-style classes because we construct them using their # __new__ method. def _is_new_style_class(cls): if hasattr(cls, '__class__'): return ('__dict__' in dir(cls) or hasattr(cls, '__slots__')) def whichmodule(obj): """Find the module an object belong to.""" module_name = getattr(obj, '__module__', None) # Protect the iteration by using a list copy of sys.modules against dynamic # modules that trigger imports of other modules upon calls to getattr. for name, module in list(sys.modules.items()): if name == '__main__' or module is None: continue try: if _getattribute(module, name)[0] is obj: return module_name except AttributeError: pass return '__main__' def _compile_and_register_class(obj, rcb, qualified_name): ast = get_jit_class_def(obj, obj.__name__) _jit_script_class_compile(qualified_name, ast, rcb) _add_script_class(obj, qualified_name)
[docs]def script(obj, optimize=None, _frames_up=0, _rcb=None): r""" Scripting a function or ``nn.Module`` will inspect the source code, compile it as TorchScript code using the TorchScript compiler, and return a :class:`ScriptModule` or :class:`ScriptFunction`. TorchScript itself is a subset of the Python language, so not all features in Python work, but we provide enough functionality to compute on tensors and do control-dependent operations. For a complete guide, see the `TorchScript Language Reference`_. ``torch.jit.script`` can be used as a function for modules and functions, and as a decorator ``@torch.jit.script`` for `TorchScript Classes <TorchScript Class_>`_ and functions. **Scripting a function** The ``@torch.jit.script`` decorator will construct a :class:`ScriptFunction` by compiling the body of the function. Example (scripting a function): .. testcode:: import torch @torch.jit.script def foo(x, y): if x.max() > y.max(): r = x else: r = y return r print(type(foo)) # torch.jit.ScriptFuncion # See the compiled graph as Python code print(foo.code) # Call the function using the TorchScript interpreter foo(torch.ones(2, 2), torch.ones(2, 2)) .. testoutput:: :hide: ... **Scripting an nn.Module** Scripting an ``nn.Module`` by default will compile the ``forward`` method and recursively compile any methods, submodules, and functions called by ``forward``. If a ``nn.Module`` only uses features supported in TorchScript, no changes to the original module code should be necessary. ``script`` will construct :class:`ScriptModule` that has copies of the attributes, parameters, and methods of the original module. Example (scripting a simple module with a Parameter): .. testcode:: import torch class MyModule(torch.nn.Module): def __init__(self, N, M): super(MyModule, self).__init__() # This parameter will be copied to the new ScriptModule self.weight = torch.nn.Parameter(torch.rand(N, M)) # When this submodule is used, it will be compiled self.linear = torch.nn.Linear(N, M) def forward(self, input): output = # This calls the `forward` method of the `nn.Linear` module, which will # cause the `self.linear` submodule to be compiled to a `ScriptModule` here output = self.linear(output) return output scripted_module = torch.jit.script(MyModule(2, 3)) Example (scripting a module with traced submodules): .. testcode:: import torch import torch.nn as nn import torch.nn.functional as F class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() # torch.jit.trace produces a ScriptModule's conv1 and conv2 self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16)) self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16)) def forward(self, input): input = F.relu(self.conv1(input)) input = F.relu(self.conv2(input)) return input scripted_module = torch.jit.script(MyModule()) To compile a method other than ``forward`` (and recursively compile anything it calls), add the :func:`@torch.jit.export <torch.jit.export>` decorator to the method. To opt out of compilation use :func:`@torch.jit.ignore <torch.jit.ignore>`. Example (an exported and ignored method in a module):: import torch import torch.nn as nn class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() @torch.jit.export def some_entry_point(self, input): return input + 10 @torch.jit.ignore def python_only_fn(self, input): # This function won't be compiled, so any # Python APIs can be used import pdb pdb.set_trace() def forward(self, input): if self.python_only_fn(input) return input * 99 scripted_module = torch.jit.script(MyModule()) print(scripted_module.some_entry_point(torch.randn(2, 2))) print(scripted_module(torch.randn(2, 2))) """ if not _enabled: return obj if optimize is not None: warnings.warn("`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead") if isinstance(obj, torch.nn.Module): return torch.jit._recursive.recursive_script(obj) qualified_name = _qualified_name(obj) if inspect.isclass(obj): # If this type is a `nn.Module` subclass, they probably meant to pass # an instance instead of a Module if issubclass(obj, torch.nn.Module): raise RuntimeError("Type '{}' cannot be compiled since it inherits" " from nn.Module," " pass an instance instead".format(obj)) if not _is_new_style_class(obj): raise RuntimeError("TorchScript classes must be new-style classes. " "Please inherit from 'object'.") if len(obj.mro()) > 2: raise RuntimeError("TorchScript classes does not support inheritance yet. " "Please directly inherit from 'object'.") if _rcb is None: _rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1) _compile_and_register_class(obj, _rcb, qualified_name) return obj else: _check_directly_compile_overloaded(obj) ast = get_jit_def(obj) if _rcb is None: _rcb = _jit_internal.createResolutionCallbackFromClosure(obj) fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj)) # Forward docstrings fn.__doc__ = obj.__doc__ return fn
def interface(obj): if not inspect.isclass(obj): raise RuntimeError("interface must be applied to a class") if not _is_new_style_class(obj): raise RuntimeError("TorchScript interfaces must inherit from 'object'") is_module_interface = issubclass(obj, torch.nn.Module) and len(obj.mro()) == 3 if not is_module_interface and len(obj.mro()) > 2: raise RuntimeError("TorchScript interface does not support inheritance yet. " "Please directly inherit from 'object' or 'nn.Module'.") qualified_name = _qualified_name(obj) rcb = _jit_internal.createResolutionCallbackFromFrame(1) # if this type is a `nn.Module` subclass, generate an module interface type # instead of a class interface type, an module interface type only compile # the user provided methods as part of the interface ast = get_jit_class_def(obj, obj.__name__) torch._C._jit_script_interface_compile(qualified_name, ast, rcb, is_module_interface) obj.__torch_script_interface__ = True return obj def script_method(fn): if not _enabled: return fn # NOTE: we need to traverse two frames here because the meta-class frame # for ScriptModule will be present, as opposed to invoking @script on a # a function or invoking define() on a CompilationUnit. # The stack will look like: # # 0. createResolutionCallback() # 1. script_method() # 2. ScriptModule metaclass frame # 3. Surrounding scope # # createResolutionCallback internally adds 1 to get us to the scope of this # function (the calling function). Adding 2 gets us to the proper surrounding scope. _rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=2) ast = get_jit_def(fn, self_name="ScriptModule") return ScriptMethodStub(_rcb, ast, fn) # These OrderedDictWrapper classes replace the actual OrderedDicts in # module with versions that get/set properties inside of script::Module. # This allows us to reuse most of nn.Module while still storing the # data in C++. # Each OrderedDict needs to support: # x not in view # x in view # view[name] = ... # view.values() # del view[name] # view.items() # view.keys() # len(view) class OrderedDictWrapper(object): def __init__(self, _c): self._c = _c def keys(self): return [k for k, v in self.items()] def values(self): return [v for k, v in self.items()] def __len__(self): return len(self.values()) def __delitem__(self, k): raise RuntimeError("cannot delete methods or parameters of a script module") def items(self): return self._c.items() def __setitem__(self, k, v): if k not in self: raise RuntimeError("Can't add a new parameter after ScriptModule construction." " Tried to add '{}".format(k)) self._c.setattr(k, v) def __contains__(self, k): return self._c.contains(k) def __getitem__(self, k): if k not in self: raise KeyError(k) return self._c.getattr(k) class OrderedModuleDict(OrderedDictWrapper): def __init__(self, module, python_dict): super(OrderedModuleDict, self).__init__(torch._C.ModuleDict(module)) # contains _both_ script modules and non-script python-only modules # because script modules are subclassed in python and the # C++ script::Module class will not hold references to them, # to ensure that you always get the same python value here # we store it in the python dict as well self._python_modules = python_dict def items(self): r = self._python_modules.items() return r def __contains__(self, k): return k in self._python_modules def __setitem__(self, k, v): # Cases where sub-module can be re-assigned after ScriptModule construction # 1. If the attr is an module interface type, it's guranteed that the module is # not inlined in the graph, so it's safe to swap a new ScriptModule in. # 2. if the new value if a ScriptModule with the same JIT type, IR won't change # and it's legit to swap a new module in. # In these two cases we allow swapping a new scripted module and update the # corresponding python module dict to keep sync. # Note: the value to be swapped in has to be ScriptModule instead of nn.Module, # otherwise it's illegal and we throw error. if isinstance(v, ScriptModule): self._c.setattr(k, v) self._python_modules[k] = v else: raise RuntimeError("Cannot re-assign modules in a ScriptModule with non-scripted " "module, tried to replace existing module '{}': {}".format(k, v)) def __getitem__(self, k): return self._python_modules[k] # For each user-defined class that subclasses ScriptModule, this meta-class: # (1) finds all the methods annotated with @script_method in a ScriptModule and # removes them from the class attributes # (2) puts a wrapper around the class's __init__ method to recusively compile # all of the script_methods with the module after the original __init__ has # run. This has to occur after the user-defined __init__ so that submodules and # parameters are initialized _before_ the script compiler resolve references to # `self.param` or `self.module`. class ScriptMeta(type): def __init__(cls, name, bases, attrs): # Aggregate all the ScriptMethods and constants from superclasses cls._methods = {} cls._constants_set = set(getattr(cls, '__constants__', ())) for base in reversed(bases): for k, v in getattr(base, '_methods', {}).items(): cls._methods[k] = v base_constants = getattr(base, '_constants_set', set()) cls._constants_set = cls._constants_set.union(base_constants) # find all the script methods of the current class for k, v in sorted(attrs.items()): if isinstance(v, ScriptMethodStub): delattr(cls, k) cls._methods[v.original_method.__name__] = v if getattr(cls, '_disable_script_meta', False): # We leave built-in ScriptModule types alone, since this metaclass # is only for compiling user classes that inherit from # ScriptModule. return super(ScriptMeta, cls).__init__(name, bases, attrs) original_init = getattr(cls, '__init__', lambda self: None) @functools.wraps(original_init) def init_then_script(self, *args, **kwargs): original_init(self, *args, **kwargs) if type(self) == cls: stubs = [v for k, v in sorted(cls._methods.items())] self.__dict__["_actual_script_module"] = torch.jit._recursive.create_script_module(self, stubs) # Delete the Python attributes that now shadow the ScriptModule # ones, so that __getattr__ and __setattr__ will properly find # the scripted versions. concrete_type = self._actual_script_module._concrete_type for name in concrete_type.get_attributes(): if hasattr(cls, name) and isinstance(getattr(cls, name), property): # TODO giant hack. Right now we are encoding properties # as attributes (this is what recursive script does # today, but it is wrong) continue delattr(self, name) for name, _ in concrete_type.get_modules(): delattr(self, name) for name in ("_parameters", "_buffers", "_modules"): delattr(self, name) cls.__init__ = init_then_script return super(ScriptMeta, cls).__init__(name, bases, attrs) if _enabled: # this is a Python 'non-data descriptor' that causes the first access # to ScriptModule's forward to lookup the forward method and stash # it in the objects dict. Due to the standard rules for attribute lookup # subsequent lookups will just directly return the previously looked up method. # This is necessary because nn.Module defines forward as a method. If we # did nothing __getattr__ would not be called. Instead we'd get nn.Module.forward # which always throws an exception. class _CachedForward(object): def __get__(self, obj, cls): return self.__getattr__('forward') class ScriptModule(with_metaclass(ScriptMeta, Module)): def __init__(self): super(ScriptModule, self).__init__() forward = _CachedForward() def __getattr__(self, attr): if "_actual_script_module" not in self.__dict__: return super(ScriptModule, self).__getattr__(attr) return getattr(self._actual_script_module, attr) def __setattr__(self, attr, value): if "_actual_script_module" not in self.__dict__: # Unwrap torch.jit.Attribute into a regular setattr + recording # the provided type in __annotations__. # # This ensures that if we use the attr again in `__init__`, it # will look like the actual value, not an instance of Attribute. if isinstance(value, Attribute): if not hasattr(self, "__annotations__"): self.__annotations__ = {} self.__annotations__[attr] = value.type value = value.value return super(ScriptModule, self).__setattr__(attr, value) setattr(self._actual_script_module, attr, value) def define(self, src): if "_actual_script_module" in self.__dict__: # If we have completed initialization, just defer to the # backing RecursiveScriptModule to eagerly compile the provided # source. return self._actual_script_module.define(src) # Otherwise, we are still in the object's __init__. # In that case, add `src` as a stub to be compiled. # # We use frames_up=1 to get to the proper surrounding scope. The stack # will look like: # 0. createResolutionCallback # 1. define() # 2. surrounding scope. # # createResolutionCallback internally adds 1 to get us to our frame, then # we add 1 to get to the proper surrounding scope. rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1) ast = torch._C._parse_source_def(src) self._methods[] = ScriptMethodStub(rcb, ast, None) class RecursiveScriptModule(ScriptModule): # XXX: RecursiveScriptModule inherits from ScriptModule for the sole # reason that it retains the existing isinstance(ScriptModule) # behavior. r""" The core data structure in TorchScript is the ``ScriptModule``. It is an analogue of torch's ``nn.Module`` and represents an entire model as a tree of submodules. Like normal modules, each individual module in a ``ScriptModule`` can have submodules, parameters, and methods. In ``nn.Module``\s methods are implemented as Python functions, but in ``ScriptModule``\s methods are implemented as TorchScript functions, a statically-typed subset of Python that contains all of PyTorch's built-in Tensor operations. This difference allows your ``ScriptModule``\s code to run without the need for a Python interpreter. ``ScriptModule``\s should not be created manually, instead use either :func:`tracing <torch.jit.trace>` or :func:`scripting <torch.jit.script>`. Tracing and scripting can be applied incrementally and :ref:`composed as necessary <Types>`. * Tracing records the tensor operations as executed with a set of example inputs and uses these operations to construct a computation graph. You can use the full dynamic behavior of Python with tracing, but values other than Tensors and control flow aren't captured in the graph. * Scripting inspects the Python code of the model and compiles it to TorchScript. Scripting allows the use of many `types`_ of values and supports dynamic control flow. Many, but not all features of Python are supported by the compiler, so changes to the source code may be necessary. """ _disable_script_meta = True def __init__(self, cpp_module): self.__dict__['_initializing'] = True self._c = cpp_module super(RecursiveScriptModule, self).__init__() # Delete the 'training' attribute set up by `Module.__init__`. It # will get set on the underlying cpp module, so we delete it here # to avoid this version shadowing the cpp module version. delattr(self, 'training') @staticmethod def _construct(cpp_module, init_fn): """ Construct a RecursiveScriptModule that's ready for use. PyTorch code should use this to construct a RecursiveScriptModule instead of instead of calling `__init__` directly, as it makes sure the object is properly finalized (and in the future we may take control of how the RecursiveScriptModule instance is created). Arguments: cpp_module: The C++ script::Module that will hold the actual state of this RecursiveScriptModule instance. init_fn: Lambda that initializes the RecursiveScriptModule passed to it. """ script_module = RecursiveScriptModule(cpp_module) init_fn(script_module) # Finalize the ScriptModule: replace the nn.Module state with our # custom implementations and flip the _initializing bit. script_module._parameters = OrderedDictWrapper(torch._C.ParameterDict(script_module._c)) script_module._buffers = OrderedDictWrapper(torch._C.BufferDict(script_module._c)) script_module._modules = OrderedModuleDict(script_module._c, script_module._modules) script_module._initializing = False return script_module @property def graph(self): r""" Returns a string representation of the internal graph for the ``forward`` method. See `Interpreting Graphs`_ for details. """ return self.forward.graph @property def code(self): r""" Returns a pretty-printed representation (as valid Python syntax) of the internal graph for the ``forward`` method. See `Inspecting Code`_ for details. """ return self.forward.code def save(self, *args, **kwargs): r""" save(f, _extra_files=ExtraFilesMap{}) See :func:` <>` for details. """ return*args, **kwargs) def save_to_buffer(self, *args, **kwargs): return self._c.save_to_buffer(*args, **kwargs) def get_debug_state(self, *args, **kwargs): return self._c.get_debug_state() def extra_repr(self): return 'original_name={}'.format(self.original_name) def graph_for(self, *args, **kwargs): return self.forward.graph_for(*args, **kwargs) @property def original_name(self): if type(self) == str(self._c._type().name()): return '' return str(self._c._type().name()) def define(self, src): # We use frames_up=1 to get to the proper surrounding scope. The stack # will look like: # 0. createResolutionCallback # 1. define() # 2. surrounding scope. # # createResolutionCallback internally adds 1 to get us to our frame, then # we add 1 to get to the proper surrounding scope. rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1) self._c._define(self._concrete_type, src, rcb) def __getattr__(self, attr): if '_initializing' not in self.__dict__: raise RuntimeError("ScriptModule has not been initialized, did you forget to call super's init?") if self._initializing: return super(RecursiveScriptModule, self).__getattr__(attr) # _modules check is before hasattr since modules are included as attributes in _c, # but we want to get the python wrapper from _modules instead of the raw _c object. if attr in self._modules: return self._modules[attr] elif self._c.hasattr(attr): return self._c.getattr(attr) elif self._c._has_method(attr): script_method = self._c._get_method(attr) # cache method so future calls do not go through __getattr__ # to improve invocation performance self.__dict__[attr] = script_method return script_method return super(RecursiveScriptModule, self).__getattr__(attr) def __setattr__(self, attr, value): if self._initializing: return super(RecursiveScriptModule, self).__setattr__(attr, value) if attr in self._modules: self._modules[attr] = value elif self._c.hasattr(attr): self._c.setattr(attr, value) elif hasattr(self, "_concrete_type") and attr in self._concrete_type.get_constants().keys(): # TODO: we don't have _concrete_type set after load(), and in general we lose constant information. # We should encode constants as class type attributes (or something) so it persists across save/load. raise AttributeError("Cannot mutate TorchScript constant value: '{}'. Value: '{}'".format(attr, value)) else: # We allow setting Python attributes on the ScriptModule, for # when people want to stash some convenience info on it. # TODO: it's possible that the following is confusing: # s = torch.jit.script(...) # s.python_attr = ... # <--- this doesn't have `python_attr` # It's fairly trivial to save enough info to warn in this case. return super(RecursiveScriptModule, self).__setattr__(attr, value) def copy(self): return torch.jit._recursive.wrap_cpp_module(self._c._clone()) def copy_instance(self): return torch.jit._recursive.wrap_cpp_module(self._c._clone_instance()) def __getstate__(self): raise pickle.PickleError( "ScriptModules cannot be deepcopied using copy.deepcopy or saved using " + "Mixed serialization of script and non-script modules is not supported. " + "For purely script modules use<filename>) instead.") # Python magic methods do method lookups on an object's class type, instead of looking up # the method defines on the class instance. In order to continue to expose the magic methods # of builtin-containers (ModuleList, Sequential, ModuleDict) to python we # define magic methods here as a shim to the correct attribute. def forward_magic_method(self, method_name, *args, **kwargs): self_method = getattr(self, method_name) if getattr(self_method, "__func__", None) == getattr(RecursiveScriptModule, method_name): raise NotImplementedError() return self_method(*args, **kwargs) def __iter__(self): return self.forward_magic_method("__iter__") def __getitem__(self, idx): return self.forward_magic_method("__getitem__", idx) def __len__(self): return self.forward_magic_method("__len__") def __contains__(self, key): return self.forward_magic_method("__contains__", key) # dir is defined by the base nn.Module, so instead of throwing if # it is not overriden, we call into the nn.Module __dir__ method def __dir__(self): self_method = getattr(self, "__dir__") if self_method.__func__ == get_function_from_type(RecursiveScriptModule, "__dir__"): return super(RecursiveScriptModule, self).__dir__() return self_method() # to resolve bool(value), python looks if __bool__ is defined then __iter__ # is defined then returns true for classes. because __iter__() on this # class throws if it isn't overriden, we define __bool__ to preserve default behavior def __bool__(self): self_method = getattr(self, "__bool__") if self_method.__func__ == get_function_from_type(RecursiveScriptModule, "__bool__"): return True return self_method() # Need to copy all RecursiveScriptModule methods to ScriptModule. # # This is because `super(MyScriptModule, self).foo()` does not use # `__getattr__` to look up `foo`. So we need to make each method available on # the ScriptModule manually. for name, item in RecursiveScriptModule.__dict__.items(): if not callable(item) and not isinstance(item, property): continue if name.startswith('__') or hasattr(ScriptModule, name): continue # We can copy over the implementation wholesale because besides the # `super()` thing above, ScriptModule behaves exactly like # RecursiveScriptModule setattr(ScriptModule, name, item) def _get_methods(cls): import inspect # In Python 3 unbound methods are functions, but in Python 2 they are methods return inspect.getmembers(cls, predicate=lambda x: inspect.isfunction(x) or inspect.ismethod(x)) _compiled_methods_whitelist = { 'forward', 'register_buffer', 'register_parameter', 'add_module', '_apply', 'apply', 'cuda', 'cpu', 'to', 'type', 'float', 'double', 'half', 'state_dict', '_save_to_state_dict', 'load_state_dict', '_load_from_state_dict', '_named_members', 'parameters', 'named_parameters', 'buffers', 'named_buffers', 'children', 'named_children', 'modules', 'named_modules', 'zero_grad', 'share_memory', '_get_name', 'extra_repr', '_slow_forward', '_tracing_name', 'eval', 'train', } def _make_fail(name): def fail(self, *args, **kwargs): raise RuntimeError(name + " is not supported on ScriptModules") return fail for name, method in _get_methods(torch.nn.Module): if name.startswith('__'): continue if name not in RecursiveScriptModule.__dict__ and name not in _compiled_methods_whitelist: setattr(RecursiveScriptModule, method.__name__, _make_fail(name)) else: # TODO MAKE SURE THAT DISABLING WORKS
[docs] class ScriptModule(torch.nn.Module): def __init__(self): super(ScriptModule, self).__init__()
class TracedModule(ScriptModule): _disable_script_meta = True def __init__(self, orig, id_set=None, _compilation_unit=None): # XXX: orig can be a nn.Module or a function! super(TracedModule, self).__init__() assert(isinstance(orig, torch.nn.Module)) # Copy a subset of `orig` to a temporary nn.Module. # This is a way to customize what will actually get compiled by create_script_module id_set = set() tmp_module = Module() def check_unique(param): if param in id_set: raise ValueError("TracedModules don't support parameter sharing between modules") id_set.add(param) = for name, param in orig._parameters.items(): if param is not None: tmp_module._parameters[name] = param check_unique(param) for name, buf in orig._buffers.items(): if buf is not None: tmp_module._buffers[name] = buf check_unique(buf) if orig._backward_hooks: raise ValueError("Modules that have backward hooks assigned can't be compiled: " + str(orig)) for name, submodule in orig._modules.items(): tmp_module._modules[name] = make_module(submodule, TracedModule, _compilation_unit=None) # TODO: this way of doing it means we lose name information on the class, # since the qualname is basically "nn.Module" script_module = torch.jit._recursive.create_script_module_for_tracing(tmp_module, ()) self.__dict__['_name'] = type(orig).__name__ self.__dict__['_actual_script_module'] = script_module for name in ("_parameters", "_buffers", "_modules"): delattr(self, name) def forward(self, *args, **kwargs): raise RuntimeError('Trace submodules cannot be called.') def __getattr__(self, attr): if "_actual_script_module" not in self.__dict__: return super(TracedModule, self).__getattr__(attr) return getattr(self._actual_script_module, attr) def __setattr__(self, attr, value): if "_actual_script_module" not in self.__dict__: return super(TracedModule, self).__setattr__(attr, value) setattr(self._actual_script_module, attr, value) def _get_name(self): return self._name def extra_repr(self): return 'original_name={}'.format(self._name) if _enabled: class TopLevelTracedModule(TracedModule): forward = _CachedForward()
[docs]def is_scripting(): r""" Function that returns True when in compilation and False otherwise. This is useful especially with the @unused decorator to leave code in your model that is not yet TorchScript compatible. .. testcode:: import torch @torch.jit.unused def unsupported_linear_op(x): return x def linear(x): if not torch.jit.is_scripting(): return torch.linear(x) else: return unsupported_linear_op(x) """ return False
def _unwrap_optional(x): assert x is not None, "Unwrapping null optional" return x _builtin_table = None _modules_containing_builtins = (torch, torch._C._nn) _builtin_ops = [ # Pairs of (function, op_name) (_list_with_default, "aten::list_with_default"), (_pair, "aten::_pair"), (_quadruple, "aten::_quadruple"), (_single, "aten::_single"), (_triple, "aten::_triple"), (_unwrap_optional, "aten::_unwrap_optional"), (_wait, 'aten::wait'), (is_scripting, "aten::is_scripting"), (OrderedDict, "aten::dict"), (dict, "aten::dict"), (cudnn.is_acceptable, "aten::cudnn_is_acceptable"), (math.ceil, "aten::ceil"), (math.copysign, "aten::copysign"), (math.erf, "aten::erf"), (math.erfc, "aten::erfc"), (math.exp, "aten::exp"), (math.expm1, "aten::expm1"), (math.fabs, "aten::fabs"), (math.floor, "aten::floor"), (math.gamma, "aten::gamma"), (math.lgamma, "aten::lgamma"), (math.log, "aten::log"), (math.log10, "aten::log10"), (math.log1p, "aten::log1p"), (math.pow, "aten::pow"), (math.sqrt, "aten::sqrt"), (math.isnan, "aten::isnan"), (math.asinh, "aten::asinh"), (math.atanh, "aten::atanh"), (math.cosh, "aten::cosh"), (math.sinh, "aten::sinh"), (math.tanh, "aten::tanh"), (math.acos, "aten::acos"), (math.asin, "aten::asin"), (math.atan, "aten::atan"), (math.atan2, "aten::atan2"), (math.cos, "aten::cos"), (math.sin, "aten::sin"), (math.tan, "aten::tan"), (math.asinh, "aten::asinh"), (math.atanh, "aten::atanh"), (math.acosh, "aten::acosh"), (math.sinh, "aten::sinh"), (math.cosh, "aten::cosh"), (math.tanh, "aten::tanh"), (math.fmod, "aten::fmod"), (math.modf, "aten::modf"), (math.factorial, "aten::factorial"), (math.frexp, "aten::frexp"), (math.isnan, "aten::isnan"), (math.isinf, "aten::isinf"), (math.degrees, "aten::degrees"), (math.radians, "aten::radians"), (math.ldexp, "aten::ldexp"), (torch.autograd.grad, "aten::grad"), (torch.autograd.backward, "aten::backward"), (torch._C._infer_size, "aten::_infer_size"), (torch.nn.functional._no_grad_embedding_renorm_, "aten::_no_grad_embedding_renorm_"), (torch.nn.functional.assert_int_or_pair, "aten::_assert_int_or_pair"), (torch.nn.functional.interpolate, "aten::__interpolate"), (torch.nn.functional.upsample_bilinear, "aten::__upsample_bilinear"), (torch.nn.functional.upsample_nearest, "aten::__upsample_nearest"), (torch.nn.functional.upsample, "aten::__upsample"), (torch.nn.init._no_grad_fill_, "aten::_no_grad_fill_"), (torch.nn.init._no_grad_normal_, "aten::_no_grad_normal_"), (torch.nn.init._no_grad_uniform_, "aten::_no_grad_uniform_"), (torch.nn.init._no_grad_zero_, "aten::_no_grad_zero_"), (torch._C._get_tracing_state, "aten::_get_tracing_state"), (warnings.warn, "aten::warn"), ] # lazily built to ensure the correct initialization order def _get_builtin_table(): global _builtin_table if _builtin_table is not None: return _builtin_table _builtin_table = {} def register_all(mod): for name in dir(mod): v = getattr(mod, name) if callable(v): _builtin_table[id(v)] = "aten::" + name for mod in _modules_containing_builtins: register_all(mod) for builtin, aten_op in _builtin_ops: _builtin_table[id(builtin)] = aten_op if not PY2: _builtin_table[id(math.gcd)] = "aten::gcd" _builtin_table[id(math.isfinite)] = "aten::isfinite" if PY37: _builtin_table[id(math.remainder)] = "aten::mathremainder" return _builtin_table def _register_builtin(fn, op): _get_builtin_table()[id(fn)] = op def _find_builtin(fn): return _get_builtin_table().get(id(fn)) # qualified_name => ScriptClass mapping _script_classes = {} def _add_script_class(cls, name): cls.__torch_script_class__ = True global _script_classes _script_classes[name] = cls def _get_script_class(name): global _script_classes if name not in _script_classes: raise RuntimeError("Unknown reference to ScriptClass '{}'. " "Did you forget to import it?".format(name)) return _script_classes[name] # overloads are registered in _jit_internal and compiled here so that _overload # can be used in nn/ without an import cycle # qualified name => list[compiled fns] _compiled_overloaded_fns = {} def _compile_function_with_overload(qual_name, impl_fn, overload_decl, overload_defaults): impl_ast = torch.jit.get_jit_def(impl_fn) _rcb = _jit_internal.createResolutionCallbackFromClosure(impl_fn) fn = torch._C._jit_script_compile_overload(qual_name, overload_decl, impl_ast, _rcb, overload_defaults) return fn def _check_no_signature(func): signature = torch.jit.annotations.get_signature(func, None, None) if signature is None: qual_name = _qualified_name(func) raise RuntimeError("Must explicitly add type annotations to overloaded functions: {}".format(qual_name)) def _get_overload_decl_and_defaults(func): _check_no_signature(func) return (torch.jit.get_jit_def(func).decl(), get_default_args(func)) def _get_overloads(obj): # check for cached compiled fns qual_name = _qualified_name(obj) global _compiled_overloaded_fns compiled_overloads = _compiled_overloaded_fns.get(qual_name, None) if compiled_overloads is not None: return compiled_overloads # check for not yet compiled overloads overloads = _jit_internal._get_fn_overloads(qual_name) if overloads is None: return None compiled_fns = [] # TODO: use default args from the implementation, not from the overload # This is more complicated because you can have a default arg with a type # incompatible with a type of parameter in an overload, and other validation. # This is still an internal api so for now use defaults from overload for overload_fn in overloads: overload_decl, overload_defaults = _get_overload_decl_and_defaults(overload_fn) compiled_fn = _compile_function_with_overload(qual_name, obj, overload_decl, overload_defaults) compiled_fns.append(compiled_fn) # cache compilation, remove information stored to do compilation _compiled_overloaded_fns[qual_name] = compiled_fns _jit_internal._clear_fn_overloads(qual_name) return compiled_fns def _check_directly_compile_overloaded(obj): qual_name = _qualified_name(obj) global _compiled_overloaded_fns global _overloaded_fns if qual_name in _compiled_overloaded_fns or _jit_internal._get_fn_overloads(qual_name): raise RuntimeError("Function {} cannot be directly compiled because it" " is overloaded. It must be used in a context of a function" " where its inputs can determine which overload to call.".format(qual_name)) # torch.jit.Error Error = torch._C.JITException set_module(Error, "torch.jit") # This is not perfect but works in common cases Error.__name__ = "Error" Error.__qualname__ = "Error" def _get_named_tuple_properties(obj): assert issubclass(obj, tuple) and hasattr(obj, '_fields') fields = list(obj._fields) annotations = [] has_annotations = hasattr(obj, '__annotations__') for field in fields: if has_annotations and field in obj.__annotations__: annotations.append(torch.jit.annotations.ann_to_type(obj.__annotations__[field])) else: annotations.append(torch._C.TensorType.get()) return type(obj).__name__, fields, annotations def _create_named_tuple(t, unqual_name, field_names): TupleType = collections.namedtuple(unqual_name, field_names) return TupleType(*t) class _disable_tracing(object): def __enter__(self): self.state = torch._C._get_tracing_state() torch._C._set_tracing_state(None) def __exit__(self, *args): torch._C._set_tracing_state(self.state) self.state = None # for use in python if using annotate def annotate(the_type, the_value): # noop in python return the_value last_executed_optimized_graph = torch._C._last_executed_optimized_graph def _graph_for(self, *args, **kwargs): self(*args, **kwargs) return last_executed_optimized_graph() torch._C.ScriptMethod.graph_for = _graph_for torch._C.ScriptFunction.graph_for = _graph_for ScriptFunction = torch._C.ScriptFunction ScriptFunction.__doc__ = """ Functionally equivalent to a :class:`ScriptModule`, but represents a single function and does not have any attributes or Parameters. """ set_module(ScriptFunction, "torch.jit") if not torch._C._jit_init(): raise RuntimeError("JIT initialization failed")


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources