Source code for torch.backends.mps
# mypy: allow-untyped-defs
from functools import lru_cache as _lru_cache
from typing import Optional, TYPE_CHECKING
import torch
from torch.library import Library as _Library
__all__ = ["is_built", "is_available", "is_macos13_or_newer", "is_macos_or_newer"]
[docs]def is_built() -> bool:
r"""Return whether PyTorch is built with MPS support.
Note that this doesn't necessarily mean MPS is available; just that
if this PyTorch binary were run a machine with working MPS drivers
and devices, we would be able to use it.
"""
return torch._C._has_mps
[docs]@_lru_cache
def is_available() -> bool:
r"""Return a bool indicating if MPS is currently available."""
return torch._C._mps_is_available()
@_lru_cache
def is_macos_or_newer(major: int, minor: int) -> bool:
r"""Return a bool indicating whether MPS is running on given MacOS or newer."""
return torch._C._mps_is_on_macos_or_newer(major, minor)
@_lru_cache
def is_macos13_or_newer(minor: int = 0) -> bool:
r"""Return a bool indicating whether MPS is running on MacOS 13 or newer."""
return torch._C._mps_is_on_macos_or_newer(13, minor)
_lib: Optional[_Library] = None
def _init():
r"""Register prims as implementation of var_mean and group_norm."""
global _lib
if _lib is not None or not is_built():
return
from torch._decomp.decompositions import native_group_norm_backward
from torch._refs import native_group_norm
_lib = _Library("aten", "IMPL") # noqa: TOR901
_lib.impl("native_group_norm", native_group_norm, "MPS")
_lib.impl("native_group_norm_backward", native_group_norm_backward, "MPS")