Source code for torch.ao.quantization.quantize
# mypy: allow-untyped-defs
import copy
import inspect
import itertools
import warnings
import torch
import torch.ao.nn.quantized as nnq
import torch.nn as nn
from torch.ao.nn.intrinsic import _FusedModule
from torch.ao.quantization.observer import _is_activation_post_process
from torch.ao.quantization.qconfig import (
_activation_is_memoryless,
_add_module_to_qconfig_obs_ctr,
default_dynamic_qconfig,
float16_dynamic_qconfig,
float_qparams_weight_only_qconfig,
float_qparams_weight_only_qconfig_4bit,
)
from torch.ao.quantization.quantization_mappings import (
_get_special_act_post_process,
_has_special_act_post_process,
get_default_dynamic_quant_module_mappings,
get_default_qat_module_mappings,
get_default_qconfig_propagation_list,
get_default_static_quant_module_mappings,
get_default_static_quant_reference_module_mappings,
no_observer_set,
)
from torch.ao.quantization.stubs import DeQuantStub, QuantWrapper
from torch.nn.utils.parametrize import type_before_parametrizations
from .utils import get_qparam_dict, has_no_children_ignoring_parametrizations
__all__ = [
"get_default_custom_config_dict",
"propagate_qconfig_",
"add_quant_dequant",
"prepare",
"quantize",
"quantize_dynamic",
"prepare_qat",
"quantize_qat",
"convert",
"swap_module",
]
# TODO remove this once BC is no longer required to avoid a SEV
is_activation_post_process = _is_activation_post_process
_DEFAULT_CUSTOM_CONFIG_DICT = {
"float_to_observed_custom_module_class": {
nn.LSTM: nn.quantizable.LSTM,
nn.MultiheadAttention: nn.quantizable.MultiheadAttention,
},
"observed_to_quantized_custom_module_class": {
nn.quantizable.LSTM: nn.quantized.LSTM,
nn.quantizable.MultiheadAttention: nn.quantized.MultiheadAttention,
},
}
def get_default_custom_config_dict():
r"""Defines the default custom config dict."""
return _DEFAULT_CUSTOM_CONFIG_DICT
def _propagate_qconfig_helper(
module,
qconfig_dict,
qconfig_parent=None,
prefix="",
prepare_custom_config_dict=None,
):
r"""This is a helper function for `propagate_qconfig_`
Args:
module: input module
qconfig_dict: dictionary that maps from name of submodule to quantization
configuration
qconfig_parent: quantization config of parent module, we will fallback to
this config when there is no specified config for current
module
prefix: corresponding prefix of the current module, used as key in
qconfig_dict
prepare_custom_config_dict: dictionary for custom handling of modules
see docs for :func:`~torch.ao.quantization.prepare_fx`
Return:
None, module is modified inplace with qconfig attached
"""
module_qconfig = qconfig_dict.get(
type_before_parametrizations(module), qconfig_parent
)
module_qconfig = qconfig_dict.get(prefix, module_qconfig)
module_qconfig = getattr(module, "qconfig", module_qconfig)
torch.ao.quantization.qconfig._assert_valid_qconfig(module_qconfig, module)
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(module_qconfig, module)
module.qconfig = qconfig_with_device_check
for name, child in module.named_children():
module_prefix = prefix + "." + name if prefix else name
# do no not propagate qconfig to child if child is non traceable
if prepare_custom_config_dict is None or not (
name in prepare_custom_config_dict.get("non_traceable_module_name", [])
or type(child)
in prepare_custom_config_dict.get("non_traceable_module_class", [])
):
_propagate_qconfig_helper(
child, qconfig_dict, qconfig_with_device_check, module_prefix
)
[docs]def propagate_qconfig_(module, qconfig_dict=None, prepare_custom_config_dict=None):
r"""Propagate qconfig through the module hierarchy and assign `qconfig`
attribute on each leaf module
Args:
module: input module
qconfig_dict: dictionary that maps from name or type of submodule to
quantization configuration, qconfig applies to all submodules of a
given module unless qconfig for the submodules are specified (when
the submodule already has qconfig attribute)
prepare_custom_config_dict: dictionary for custom handling of modules
see docs for :func:`~torch.ao.quantization.prepare_fx`
Return:
None, module is modified inplace with qconfig attached
"""
if qconfig_dict is None:
qconfig_dict = {}
if prepare_custom_config_dict is None:
prepare_custom_config_dict = {}
_propagate_qconfig_helper(
module, qconfig_dict, prepare_custom_config_dict=prepare_custom_config_dict
)
def _observer_forward_hook(self, input, output):
r"""Forward hook that calls observer on the output"""
return self.activation_post_process(output)
def _observer_forward_pre_hook(self, input):
r"""Forward pre hook that calls observer on the output"""
return self.activation_post_process(input[0])
def _register_activation_post_process_hook(module, pre_hook=False):
assert hasattr(
module, "activation_post_process"
), "Expect activation_post_process attribute already attached to the module"
if pre_hook:
handle = module.register_forward_pre_hook(
_observer_forward_pre_hook, prepend=True
)
else:
handle = module.register_forward_hook(_observer_forward_hook, prepend=True)
def _add_observer_(
module,
qconfig_propagation_list=None,
non_leaf_module_list=None,
device=None,
custom_module_class_mapping=None,
):
r"""Add observer for the leaf child of the module.
This function insert observer module to all leaf child module that
has a valid qconfig attribute.
Args:
module: input module with qconfig attributes for all the leaf modules that we want to quantize
qconfig_propagation_list: a list of quantizable modules that will have observers added to them
if they are leaf nodes
device: parent device, if any
non_leaf_module_list: list of non-leaf modules we want to add observer
Return:
None, module is modified inplace with added observer modules and forward_hooks
"""
if qconfig_propagation_list is None:
qconfig_propagation_list = get_default_qconfig_propagation_list()
if custom_module_class_mapping is None:
custom_module_class_mapping = {}
# respect device affinity when adding observers
if device is None:
devices = _get_unique_devices_(module)
assert (
len(devices) <= 1
), f"_add_observer_ only works with cpu or single-device CUDA modules, but got devices {devices}"
device = next(iter(devices)) if len(devices) > 0 else None
def get_activation_post_process(qconfig, device, special_act_post_process=None):
activation = (
qconfig.activation()
if special_act_post_process is None
else special_act_post_process()
)
if device is not None:
activation.to(device)
return activation
def needs_observation(m):
return hasattr(m, "qconfig") and m.qconfig is not None
def insert_activation_post_process(m, special_act_post_process=None):
"""Adds an activation post process module and register
a pre or post hook that calls the module
"""
# We don't insert observer/fake_quantize for DeQuantStub
if needs_observation(m) and not isinstance(m, DeQuantStub):
# observer and hook will be gone after we swap the module
m.add_module(
"activation_post_process",
get_activation_post_process(
m.qconfig, device, special_act_post_process
),
)
# Register observer as the first entry in the hook list
# All post forward hooks are preserved and will be executed after the observer before convert
_register_activation_post_process_hook(
m, pre_hook=_activation_is_memoryless(m.qconfig)
)
for name, child in module.named_children():
# TODO remove Dropout special after codebase stable
if type_before_parametrizations(child) in [nn.Dropout]:
continue
elif issubclass(
type_before_parametrizations(child), (nnq.FloatFunctional, nnq.QFunctional)
):
if needs_observation(child):
assert hasattr(
child, "activation_post_process"
), f"functional class {type_before_parametrizations(child)} has no pre-defined `activation_post_process`"
child.activation_post_process = get_activation_post_process(
child.qconfig, device
)
elif isinstance(child, _FusedModule):
# activation_post_process are now added directly to nn.Sequential/_FusedModule
if needs_observation(child):
insert_activation_post_process(child)
elif (
non_leaf_module_list is not None
and type_before_parametrizations(child) in non_leaf_module_list
):
if needs_observation(child):
insert_activation_post_process(child)
elif _has_special_act_post_process(child):
special_act_post_process = _get_special_act_post_process(child)
insert_activation_post_process(child, special_act_post_process)
elif (
needs_observation(child)
and type_before_parametrizations(child) in custom_module_class_mapping
):
observed_child = custom_module_class_mapping[
type_before_parametrizations(child)
].from_float(child)
setattr(module, name, observed_child)
# TODO: These are the modules that cannot be observed
# Once there are more, we should move them to a separate list
if (
custom_module_class_mapping[type_before_parametrizations(child)]
not in no_observer_set()
):
insert_activation_post_process(observed_child)
else:
_add_observer_(
child,
qconfig_propagation_list,
non_leaf_module_list,
device,
custom_module_class_mapping,
)
# Insert observers only for leaf nodes, note that this observer is for
# the output of the module, for input QuantStub will observe them
if (
has_no_children_ignoring_parametrizations(module)
and not isinstance(module, torch.nn.Sequential)
and type_before_parametrizations(module) in qconfig_propagation_list
):
insert_activation_post_process(module)
# This is a special case for AdaRound eager mode
# AdaRound contains weight_fake_quant to be propagated from API to convert
# leaf node check with a number of children looks naive assumption that blocks
# Adding an exception case for AdaRound
if (
hasattr(module, "weight_fake_quant")
and not isinstance(module, torch.nn.Sequential)
and type_before_parametrizations(module) in qconfig_propagation_list
):
insert_activation_post_process(module)
def _get_unique_devices_(module):
return {p.device for p in module.parameters()} | {
p.device for p in module.buffers()
}
[docs]def add_quant_dequant(module):
r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig
Note that this function will modify the children of module inplace and it
can return a new module which wraps the input module as well.
Args:
module: input module with qconfig attributes for all the leaf modules
that we want to quantize
Return:
Either the inplace modified module with submodules wrapped in
`QuantWrapper` based on qconfig or a new `QuantWrapper` module which
wraps the input module, the latter case only happens when the input
module is a leaf module and we want to quantize it.
"""
if (
has_no_children_ignoring_parametrizations(module)
and hasattr(module, "qconfig")
and module.qconfig
):
return QuantWrapper(module)
for name, child in module.named_children():
module._modules[name] = add_quant_dequant(child)
return module
[docs]def prepare(
model,
inplace=False,
allow_list=None,
observer_non_leaf_module_list=None,
prepare_custom_config_dict=None,
):
r"""Prepares a copy of the model for quantization calibration or quantization-aware training.
Quantization configuration should be assigned preemptively
to individual submodules in `.qconfig` attribute.
The model will be attached with observer or fake quant modules, and qconfig
will be propagated.
Args:
`model`: input model to be modified in-place
`inplace`: carry out model transformations in-place, the original module is mutated
`allow_list`: list of quantizable modules
`observer_non_leaf_module_list`: list of non-leaf modules we want to add observer
`prepare_custom_config_dict`: customization configuration dictionary for prepare function
.. code-block:: python
# Example of prepare_custom_config_dict:
prepare_custom_config_dict = {
# user will manually define the corresponding observed
# module class which has a from_float class method that converts
# float custom module to observed custom module
"float_to_observed_custom_module_class": {
CustomModule: ObservedCustomModule
}
}
"""
torch._C._log_api_usage_once("quantization_api.quantize.prepare")
if prepare_custom_config_dict is None:
prepare_custom_config_dict = get_default_custom_config_dict()
custom_module_class_mapping = prepare_custom_config_dict.get(
"float_to_observed_custom_module_class", {}
)
if not inplace:
model = copy.deepcopy(model)
# TODO: remove allow_list
qconfig_propagation_list = allow_list
if allow_list is None:
qconfig_propagation_list = get_default_qconfig_propagation_list()
propagate_qconfig_(model, qconfig_dict=None)
# sanity check common API misusage
if not any(hasattr(m, "qconfig") and m.qconfig for m in model.modules()):
warnings.warn(
"None of the submodule got qconfig applied. Make sure you "
"passed correct configuration through `qconfig_dict` or "
"by assigning the `.qconfig` attribute directly on submodules"
)
_add_observer_(
model,
qconfig_propagation_list,
observer_non_leaf_module_list,
custom_module_class_mapping=custom_module_class_mapping,
)
return model
def _remove_activation_post_process(module):
# TODO: maybe we should change activation_post_process to _activation_post_process
# to prevent it from being used by user
if hasattr(module, "activation_post_process") and _is_activation_post_process(
module.activation_post_process
):
delattr(module, "activation_post_process")
# remove activation_post_process pre and post hooks
def remove_hooks(pre_hook=False):
hook_map = module._forward_pre_hooks if pre_hook else module._forward_hooks
observer_hook = (
_observer_forward_pre_hook if pre_hook else _observer_forward_hook
)
handle_ids_to_remove = set()
for handle_id, hook_fn in hook_map.items():
if hook_fn is observer_hook:
handle_ids_to_remove.add(handle_id)
for handle_id in handle_ids_to_remove:
hook_map.pop(handle_id)
remove_hooks(pre_hook=True)
remove_hooks(pre_hook=False)
# TODO: rename to something more general
def _remove_qconfig(module):
r"""Clean up the qconfig left in the module so that new qconfig can be
propagated.
Args:
module: module to be cleaned up
"""
for child in module.children():
_remove_qconfig(child)
if hasattr(module, "qconfig"):
del module.qconfig
_remove_activation_post_process(module)
[docs]def quantize(model, run_fn, run_args, mapping=None, inplace=False):
r"""Quantize the input float model with post training static quantization.
First it will prepare the model for calibration, then it calls
`run_fn` which will run the calibration step, after that we will
convert the model to a quantized model.
Args:
model: input float model
run_fn: a calibration function for calibrating the prepared model
run_args: positional arguments for `run_fn`
inplace: carry out model transformations in-place, the original module is mutated
mapping: correspondence between original module types and quantized counterparts
Return:
Quantized model.
"""
torch._C._log_api_usage_once("quantization_api.quantize.quantize")
if mapping is None:
mapping = get_default_static_quant_module_mappings()
if not inplace:
model = copy.deepcopy(model)
model.eval()
prepare(model, inplace=True)
run_fn(model, *run_args)
convert(model, mapping, inplace=True)
return model
[docs]def quantize_dynamic(
model, qconfig_spec=None, dtype=torch.qint8, mapping=None, inplace=False
):
r"""Converts a float model to dynamic (i.e. weights-only) quantized model.
Replaces specified modules with dynamic weight-only quantized versions and output the quantized model.
For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization
by default is performed for layers with large weights size - i.e. Linear and RNN variants.
Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`.
If `qconfig` is provided, the `dtype` argument is ignored.
Args:
model: input model
qconfig_spec: Either:
- A dictionary that maps from name or type of submodule to quantization
configuration, qconfig applies to all submodules of a given
module unless qconfig for the submodules are specified (when the
submodule already has qconfig attribute). Entries in the dictionary
need to be QConfig instances.
- A set of types and/or submodule names to apply dynamic quantization to,
in which case the `dtype` argument is used to specify the bit-width
inplace: carry out model transformations in-place, the original module is mutated
mapping: maps type of a submodule to a type of corresponding dynamically quantized version
with which the submodule needs to be replaced
"""
torch._C._log_api_usage_once("quantization_api.quantize.quantize_dynamic")
if qconfig_spec is None:
if dtype == torch.qint8:
qconfig_spec = {
nn.Linear: default_dynamic_qconfig,
nn.LSTM: default_dynamic_qconfig,
nn.GRU: default_dynamic_qconfig,
nn.LSTMCell: default_dynamic_qconfig,
nn.RNNCell: default_dynamic_qconfig,
nn.GRUCell: default_dynamic_qconfig,
}
elif dtype == torch.float16:
qconfig_spec = {
nn.Linear: float16_dynamic_qconfig,
nn.LSTM: float16_dynamic_qconfig,
nn.GRU: float16_dynamic_qconfig,
nn.LSTMCell: float16_dynamic_qconfig,
nn.RNNCell: float16_dynamic_qconfig,
nn.GRUCell: float16_dynamic_qconfig,
}
elif dtype == torch.quint8:
qconfig_spec = {
nn.EmbeddingBag: float_qparams_weight_only_qconfig,
nn.Embedding: float_qparams_weight_only_qconfig,
}
elif dtype == torch.quint4x2:
qconfig_spec = {
nn.EmbeddingBag: float_qparams_weight_only_qconfig_4bit,
}
else:
raise ValueError(
f"Don't know how to quantize with default settings for {dtype}. Provide full qconfig please"
)
elif isinstance(qconfig_spec, set):
if dtype is torch.qint8:
default_qconfig = default_dynamic_qconfig
elif dtype is torch.float16:
default_qconfig = float16_dynamic_qconfig
elif dtype is torch.quint8:
default_qconfig = float_qparams_weight_only_qconfig
elif dtype is torch.quint4x2:
default_qconfig = float_qparams_weight_only_qconfig_4bit
else:
raise RuntimeError(
"Unknown dtype specified for quantize_dynamic: ", str(dtype)
)
qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig)))
if mapping is None:
mapping = get_default_dynamic_quant_module_mappings()
if not inplace:
model = copy.deepcopy(model)
model.eval()
propagate_qconfig_(model, qconfig_spec)
convert(model, mapping, inplace=True)
return model
[docs]def prepare_qat(model, mapping=None, inplace=False):
r"""
Prepares a copy of the model for quantization calibration or
quantization-aware training and converts it to quantized version.
Quantization configuration should be assigned preemptively
to individual submodules in `.qconfig` attribute.
Args:
model: input model to be modified in-place
mapping: dictionary that maps float modules to quantized modules to be
replaced.
inplace: carry out model transformations in-place, the original module
is mutated
"""
torch._C._log_api_usage_once("quantization_api.quantize.prepare_qat")
assert model.training, "prepare_qat only works on models in training mode"
if mapping is None:
mapping = get_default_qat_module_mappings()
if not inplace:
model = copy.deepcopy(model)
propagate_qconfig_(model, qconfig_dict=None)
convert(model, mapping=mapping, inplace=True, remove_qconfig=False)
prepare(model, observer_non_leaf_module_list=set(mapping.values()), inplace=True)
return model
[docs]def quantize_qat(model, run_fn, run_args, inplace=False):
r"""Do quantization aware training and output a quantized model
Args:
model: input model
run_fn: a function for evaluating the prepared model, can be a
function that simply runs the prepared model or a training
loop
run_args: positional arguments for `run_fn`
Return:
Quantized model.
"""
torch._C._log_api_usage_once("quantization_api.quantize.quantize_qat")
if not inplace:
model = copy.deepcopy(model)
model.train()
prepare_qat(model, inplace=True)
run_fn(model, *run_args)
convert(model, inplace=True)
return model
[docs]def convert(
module,
mapping=None,
inplace=False,
remove_qconfig=True,
is_reference=False,
convert_custom_config_dict=None,
use_precomputed_fake_quant=False,
):
r"""Converts submodules in input module to a different module according to `mapping`
by calling `from_float` method on the target module class. And remove qconfig at the
end if remove_qconfig is set to True.
Args:
`module`: prepared and calibrated module
`mapping`: a dictionary that maps from source module type to target
module type, can be overwritten to allow swapping user defined
Modules
`inplace`: carry out model transformations in-place, the original module
is mutated
`convert_custom_config_dict`: custom configuration dictionary for convert function
`use_precomputed_fake_quant`: a flag to enable use of precomputed fake quant
.. code-block:: python
# Example of convert_custom_config_dict:
convert_custom_config_dict = {
# user will manually define the corresponding quantized
# module class which has a from_observed class method that converts
# observed custom module to quantized custom module
"observed_to_quantized_custom_module_class": {
ObservedCustomModule: QuantizedCustomModule
}
}
"""
torch._C._log_api_usage_once("quantization_api.quantize.convert")
if not inplace:
module = copy.deepcopy(module)
_convert(
module,
mapping,
inplace=True,
is_reference=is_reference,
convert_custom_config_dict=convert_custom_config_dict,
use_precomputed_fake_quant=use_precomputed_fake_quant,
)
if remove_qconfig:
_remove_qconfig(module)
return module
def _convert(
module,
mapping=None,
inplace=False,
is_reference=False,
convert_custom_config_dict=None,
use_precomputed_fake_quant=False,
):
r"""Converts submodules in input module to a different module according to `mapping`
by calling `from_float` method on the target module class
Args:
module: input module
mapping: a dictionary that maps from source module type to target
module type, can be overwritten to allow swapping user defined
Modules
inplace: carry out model transformations in-place, the original module
is mutated
is_reference: a flag to enable quantized reference module
use_precomputed_fake_quant: a flag to enable use of precomputed fake quant
"""
if mapping is None:
mapping = (
get_default_static_quant_reference_module_mappings()
if is_reference
else get_default_static_quant_module_mappings()
)
if convert_custom_config_dict is None:
convert_custom_config_dict = get_default_custom_config_dict()
custom_module_class_mapping = convert_custom_config_dict.get(
"observed_to_quantized_custom_module_class", {}
)
if not inplace:
module = copy.deepcopy(module)
reassign = {}
for name, mod in module.named_children():
# both fused modules and observed custom modules are
# swapped as one unit
if (
not isinstance(mod, _FusedModule)
and type_before_parametrizations(mod) not in custom_module_class_mapping
):
_convert(
mod,
mapping,
True, # inplace
is_reference,
convert_custom_config_dict,
use_precomputed_fake_quant=use_precomputed_fake_quant,
)
reassign[name] = swap_module(
mod, mapping, custom_module_class_mapping, use_precomputed_fake_quant
)
for key, value in reassign.items():
module._modules[key] = value
return module
[docs]def swap_module(
mod, mapping, custom_module_class_mapping, use_precomputed_fake_quant=False
):
r"""Swaps the module if it has a quantized counterpart and it has an
`observer` attached.
Args:
mod: input module
mapping: a dictionary that maps from nn module to nnq module
Return:
The corresponding quantized module of `mod`
"""
new_mod = mod
if hasattr(mod, "qconfig") and mod.qconfig is not None:
swapped = False
if type_before_parametrizations(mod) in custom_module_class_mapping:
new_mod = custom_module_class_mapping[
type_before_parametrizations(mod)
].from_observed(mod)
swapped = True
elif type_before_parametrizations(mod) in mapping:
qmod = mapping[type_before_parametrizations(mod)]
if hasattr(qmod, "_IS_REFERENCE") and qmod._IS_REFERENCE:
assert mod.qconfig is not None
weight_post_process = mod.qconfig.weight()
weight_post_process(mod.weight)
weight_qparams = get_qparam_dict(weight_post_process)
new_mod = qmod.from_float(mod, weight_qparams)
else:
sig = inspect.signature(qmod.from_float)
if "use_precomputed_fake_quant" in sig.parameters:
new_mod = qmod.from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
else:
new_mod = qmod.from_float(mod)
swapped = True
if swapped:
# Preserve module's pre forward hooks. They'll be called on quantized input
for pre_hook_fn in mod._forward_pre_hooks.values():
new_mod.register_forward_pre_hook(pre_hook_fn)
# Preserve module's post forward hooks except _observer_forward_hook
# After convert they'll work with quantized output
for hook_fn in mod._forward_hooks.values():
if hook_fn is not _observer_forward_hook:
new_mod.register_forward_hook(hook_fn)
# respect device affinity when swapping modules
devices = _get_unique_devices_(mod)
assert (
len(devices) <= 1
), f"swap_module only works with cpu or single-device CUDA modules, but got devices {devices}"
device = next(iter(devices)) if len(devices) > 0 else None
if device:
new_mod.to(device)
return new_mod
def _get_observer_dict(mod, target_dict, prefix=""):
r"""Traverse the modules and save all observers into dict.
This is mainly used for quantization accuracy debug
Args:
mod: the top module we want to save all observers
prefix: the prefix for the current module
target_dict: the dictionary used to save all the observers
"""
def get_prefix(prefix):
return prefix if prefix == "" else prefix + "."
if hasattr(mod, "activation_post_process"):
target_dict[
get_prefix(prefix) + "activation_post_process"
] = mod.activation_post_process
for name, child in mod.named_children():
module_prefix = get_prefix(prefix) + name if prefix else name
_get_observer_dict(child, target_dict, module_prefix)