Source code for torch.ao.nn.quantized.modules.linear
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from collections.abc import Iterable
from typing import Optional
import torch
import torch.ao.nn.intrinsic as nni
import torch.ao.nn.intrinsic.qat as nniqat
import torch.nn as nn
from torch.nn.utils.fusion import fuse_linear_bn_weights
from torch.nn.utils.parametrize import type_before_parametrizations
from .utils import _hide_packed_params_repr, _quantize_weight, WeightedQuantizedModule
__all__ = ["LinearPackedParams", "Linear"]
class LinearPackedParams(torch.nn.Module):
_version = 3
def __init__(self, dtype=torch.qint8):
super().__init__()
self.dtype = dtype
if self.dtype == torch.qint8:
wq = torch._empty_affine_quantized(
[1, 1], scale=1.0, zero_point=0, dtype=torch.qint8
)
elif self.dtype == torch.float16:
wq = torch.zeros([1, 1], dtype=torch.float)
self.set_weight_bias(wq, None) # type: ignore[possibly-undefined]
@torch.jit.export
def set_weight_bias(
self, weight: torch.Tensor, bias: Optional[torch.Tensor]
) -> None:
if self.dtype == torch.qint8:
self._packed_params = torch.ops.quantized.linear_prepack(weight, bias)
elif self.dtype == torch.float16:
self._packed_params = torch.ops.quantized.linear_prepack_fp16(weight, bias)
else:
raise RuntimeError("Unsupported dtype on dynamic quantized linear!")
@torch.jit.export
def _weight_bias(self):
if self.dtype == torch.qint8:
return torch.ops.quantized.linear_unpack(self._packed_params)
elif self.dtype == torch.float16:
return torch.ops.quantized.linear_unpack_fp16(self._packed_params)
else:
raise RuntimeError("Unsupported dtype on dynamic quantized linear!")
def forward(self, x):
return x
# Version 1
# self
# |--- weight : Tensor
# |--- bias : Tensor
#
# Version 2
# self
# |--- weight : Tensor
# |--- bias : Tensor
# |--- dtype : torch.dtype
#
# Version 3
# self
# |--- _packed_params : (Tensor, Tensor) representing (weight, bias)
# of LinearPackedParams
# |--- dtype : torch.dtype
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + "dtype"] = self.dtype
destination[prefix + "_packed_params"] = self._weight_bias()
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version < 2:
self.dtype = torch.qint8
else:
self.dtype = state_dict[prefix + "dtype"]
state_dict.pop(prefix + "dtype")
if version is None or version < 3:
self.set_weight_bias(
state_dict[prefix + "weight"], state_dict[prefix + "bias"]
)
state_dict.pop(prefix + "weight")
state_dict.pop(prefix + "bias")
if version == 3:
weight, bias = state_dict[prefix + "_packed_params"]
state_dict.pop(prefix + "_packed_params")
self.set_weight_bias(weight, bias)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
False,
missing_keys,
unexpected_keys,
error_msgs,
)
def __repr__(self):
return self._weight_bias().__repr__()
[docs]class Linear(WeightedQuantizedModule):
r"""
A quantized linear module with quantized tensor as inputs and outputs.
We adopt the same interface as `torch.nn.Linear`, please see
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
Similar to :class:`~torch.nn.Linear`, attributes will be randomly
initialized at module creation time and will be overwritten later
Attributes:
weight (Tensor): the non-learnable quantized weights of the module of
shape :math:`(\text{out\_features}, \text{in\_features})`.
bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized to zero.
scale: `scale` parameter of output Quantized Tensor, type: double
zero_point: `zero_point` parameter for output Quantized Tensor, type: long
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
>>> m = nn.quantized.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> # xdoctest: +SKIP
>>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
_version = 3
_FLOAT_MODULE = (nn.Linear, nn.modules.linear.NonDynamicallyQuantizableLinear)
def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8):
super().__init__()
# We don't muck around with buffers or attributes or anything here
# to keep the module simple. *everything* is simply a Python attribute.
# Serialization logic is explicitly handled in the below serialization and
# deserialization modules
self.in_features = in_features
self.out_features = out_features
bias = None
if bias_:
bias = torch.zeros(out_features, dtype=torch.float)
if dtype == torch.qint8:
qweight = torch._empty_affine_quantized(
[out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8
)
elif dtype == torch.float16:
qweight = torch.zeros([out_features, in_features], dtype=torch.float)
else:
raise RuntimeError("Unsupported dtype specified for quantized Linear!")
self._packed_params = LinearPackedParams(dtype)
self._packed_params.set_weight_bias(qweight, bias)
self.scale = 1.0
self.zero_point = 0
def _get_name(self):
return "QuantizedLinear"
def extra_repr(self):
return (
f"in_features={self.in_features}, out_features={self.out_features}, scale={self.scale}, "
f"zero_point={self.zero_point}, qscheme={self.weight().qscheme()}"
)
def __repr__(self):
return _hide_packed_params_repr(self, LinearPackedParams)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.ops.quantized.linear(
x, self._packed_params._packed_params, self.scale, self.zero_point
)
# ===== Serialization methods =====
# The special consideration here is that we have to unpack the weights into their
# regular QTensor form for serialization. Packed weights should not live
# outside the process in which they were created, rather they should be derived
# from the QTensor weight.
#
# Version 1
# self
# |--- scale : float
# |--- zero_point : int
# |--- weight : Tensor
# |--- bias : Tensor
#
# Version 2
# self
# |--- scale : float
# |--- zero_point : int
# |--- _packed_params : Module
# |--- weight : Tensor
# |--- bias : Tensor
#
# Version 3
# self
# |--- scale : float
# |--- zero_point : int
# |--- _packed_params : Module
# |--- _packed_params : (Tensor, Tensor) representing weight, bias
# of LinearPackedParams C++ struct
#
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + "scale"] = torch.tensor(self.scale)
destination[prefix + "zero_point"] = torch.tensor(self.zero_point)
# ===== Deserialization methods =====
# Counterpart to the serialization methods, we must pack the serialized QTensor
# weight into its packed format for use by the FBGEMM ops.
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
self.scale = float(state_dict[prefix + "scale"])
state_dict.pop(prefix + "scale")
self.zero_point = int(state_dict[prefix + "zero_point"])
state_dict.pop(prefix + "zero_point")
version = local_metadata.get("version", None)
if version is None or version == 1:
# We moved the parameters into a LinearPackedParameters submodule
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias")
state_dict.update(
{
prefix + "_packed_params.weight": weight,
prefix + "_packed_params.bias": bias,
}
)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
False,
missing_keys,
unexpected_keys,
error_msgs,
)
# Function rather than property to make sure that JIT serialization doesn't
# register this as an attribute
def _weight_bias(self):
return self._packed_params._weight_bias()
def weight(self):
return self._weight_bias()[0]
def bias(self):
return self._weight_bias()[1]
def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
self._packed_params.set_weight_bias(w, b)
[docs] @classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
r"""Create a quantized module from an observed float module
Args:
mod (Module): a float module, either produced by torch.ao.quantization
utilities or provided by the user
use_precomputed_fake_quant (bool): if True, the module will reuse min/max
values from the precomputed fake quant module.
"""
if hasattr(mod, "weight_fake_quant"):
if type_before_parametrizations(mod) == nniqat.LinearBn1d:
mod.weight, mod.bias = fuse_linear_bn_weights(
mod.weight,
mod.bias,
mod.bn.running_mean,
mod.bn.running_var,
mod.bn.eps,
mod.bn.weight,
mod.bn.bias,
)
weight_post_process = mod.weight_fake_quant
activation_post_process = mod.activation_post_process
else:
# This function does not participate in JIT, so it is OK to ignore
# the type mismatch in assignment. Also, mypy has an issue with
# iterables not being implemented, so we are ignoring those too.
if not isinstance(cls._FLOAT_MODULE, Iterable):
cls._FLOAT_MODULE = [cls._FLOAT_MODULE] # type: ignore[assignment]
supported_modules = ", ".join([float_mod.__name__ for float_mod in cls._FLOAT_MODULE]) # type: ignore[attr-defined]
error_msg = f"nnq.{cls.__name__}.from_float only works for {supported_modules}, but got: {type(mod)}"
assert type_before_parametrizations(mod) in cls._FLOAT_MODULE, error_msg.format() # type: ignore[attr-defined]
assert hasattr(
mod, "qconfig"
), "Input float module must have qconfig defined"
activation_post_process = mod.activation_post_process
if type_before_parametrizations(mod) == nni.LinearReLU:
mod = mod[0]
weight_post_process = (
mod.qconfig.weight()
if not hasattr(mod, "weight_fake_quant")
else mod.weight_fake_quant
)
if not use_precomputed_fake_quant:
# Observer may not have been called yet
# Observer might have been called in the previous stage via PTQ algorithm e.g. AdaRound
weight_post_process(mod.weight)
dtype = weight_post_process.dtype
act_scale, act_zp = activation_post_process.calculate_qparams()
assert dtype == torch.qint8, "Weight observer must have dtype torch.qint8"
qweight = _quantize_weight(mod.weight.float(), weight_post_process)
qlinear = cls(mod.in_features, mod.out_features, dtype=dtype)
qlinear.set_weight_bias(qweight, mod.bias)
qlinear.scale = float(act_scale)
qlinear.zero_point = int(act_zp)
return qlinear
[docs] @classmethod
def from_reference(cls, ref_qlinear, output_scale, output_zero_point):
r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module
Args:
ref_qlinear (Module): a reference quantized linear module, either produced by torch.ao.quantization
utilities or provided by the user
output_scale (float): scale for output Tensor
output_zero_point (int): zero point for output Tensor
"""
qlinear = cls(ref_qlinear.in_features, ref_qlinear.out_features)
qweight = ref_qlinear.get_quantized_weight()
qlinear.set_weight_bias(qweight, ref_qlinear.bias)
qlinear.scale = float(output_scale)
qlinear.zero_point = int(output_zero_point)
return qlinear