Source code for torch.ao.nn.quantizable.modules.rnn
"""
We will recreate all the RNN modules as we require the modules to be decomposed
into its building blocks to be able to observe.
"""
# mypy: allow-untyped-defs
import numbers
import warnings
from typing import Optional, Tuple
import torch
from torch import Tensor
__all__ = ["LSTMCell", "LSTM"]
class LSTMCell(torch.nn.Module):
r"""A quantizable long short-term memory (LSTM) cell.
For the description and the argument types, please, refer to :class:`~torch.nn.LSTMCell`
Examples::
>>> import torch.ao.nn.quantizable as nnqa
>>> rnn = nnqa.LSTMCell(10, 20)
>>> input = torch.randn(6, 10)
>>> hx = torch.randn(3, 20)
>>> cx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx, cx = rnn(input[i], (hx, cx))
... output.append(hx)
"""
_FLOAT_MODULE = torch.nn.LSTMCell
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.input_size = input_dim
self.hidden_size = hidden_dim
self.bias = bias
self.igates = torch.nn.Linear(
input_dim, 4 * hidden_dim, bias=bias, **factory_kwargs
)
self.hgates = torch.nn.Linear(
hidden_dim, 4 * hidden_dim, bias=bias, **factory_kwargs
)
self.gates = torch.ao.nn.quantized.FloatFunctional()
self.input_gate = torch.nn.Sigmoid()
self.forget_gate = torch.nn.Sigmoid()
self.cell_gate = torch.nn.Tanh()
self.output_gate = torch.nn.Sigmoid()
self.fgate_cx = torch.ao.nn.quantized.FloatFunctional()
self.igate_cgate = torch.ao.nn.quantized.FloatFunctional()
self.fgate_cx_igate_cgate = torch.ao.nn.quantized.FloatFunctional()
self.ogate_cy = torch.ao.nn.quantized.FloatFunctional()
self.initial_hidden_state_qparams: Tuple[float, int] = (1.0, 0)
self.initial_cell_state_qparams: Tuple[float, int] = (1.0, 0)
self.hidden_state_dtype: torch.dtype = torch.quint8
self.cell_state_dtype: torch.dtype = torch.quint8
def forward(
self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None
) -> Tuple[Tensor, Tensor]:
if hidden is None or hidden[0] is None or hidden[1] is None:
hidden = self.initialize_hidden(x.shape[0], x.is_quantized)
hx, cx = hidden
igates = self.igates(x)
hgates = self.hgates(hx)
gates = self.gates.add(igates, hgates)
input_gate, forget_gate, cell_gate, out_gate = gates.chunk(4, 1)
input_gate = self.input_gate(input_gate)
forget_gate = self.forget_gate(forget_gate)
cell_gate = self.cell_gate(cell_gate)
out_gate = self.output_gate(out_gate)
fgate_cx = self.fgate_cx.mul(forget_gate, cx)
igate_cgate = self.igate_cgate.mul(input_gate, cell_gate)
fgate_cx_igate_cgate = self.fgate_cx_igate_cgate.add(fgate_cx, igate_cgate)
cy = fgate_cx_igate_cgate
# TODO: make this tanh a member of the module so its qparams can be configured
tanh_cy = torch.tanh(cy)
hy = self.ogate_cy.mul(out_gate, tanh_cy)
return hy, cy
def initialize_hidden(
self, batch_size: int, is_quantized: bool = False
) -> Tuple[Tensor, Tensor]:
h, c = torch.zeros((batch_size, self.hidden_size)), torch.zeros(
(batch_size, self.hidden_size)
)
if is_quantized:
(h_scale, h_zp) = self.initial_hidden_state_qparams
(c_scale, c_zp) = self.initial_cell_state_qparams
h = torch.quantize_per_tensor(
h, scale=h_scale, zero_point=h_zp, dtype=self.hidden_state_dtype
)
c = torch.quantize_per_tensor(
c, scale=c_scale, zero_point=c_zp, dtype=self.cell_state_dtype
)
return h, c
def _get_name(self):
return "QuantizableLSTMCell"
@classmethod
def from_params(cls, wi, wh, bi=None, bh=None):
"""Uses the weights and biases to create a new LSTM cell.
Args:
wi, wh: Weights for the input and hidden layers
bi, bh: Biases for the input and hidden layers
"""
assert (bi is None) == (bh is None) # Either both None or both have values
input_size = wi.shape[1]
hidden_size = wh.shape[1]
cell = cls(input_dim=input_size, hidden_dim=hidden_size, bias=(bi is not None))
cell.igates.weight = torch.nn.Parameter(wi)
if bi is not None:
cell.igates.bias = torch.nn.Parameter(bi)
cell.hgates.weight = torch.nn.Parameter(wh)
if bh is not None:
cell.hgates.bias = torch.nn.Parameter(bh)
return cell
@classmethod
def from_float(cls, other, use_precomputed_fake_quant=False):
assert type(other) == cls._FLOAT_MODULE
assert hasattr(other, "qconfig"), "The float module must have 'qconfig'"
observed = cls.from_params(
other.weight_ih, other.weight_hh, other.bias_ih, other.bias_hh
)
observed.qconfig = other.qconfig
observed.igates.qconfig = other.qconfig
observed.hgates.qconfig = other.qconfig
return observed
class _LSTMSingleLayer(torch.nn.Module):
r"""A single one-directional LSTM layer.
The difference between a layer and a cell is that the layer can process a
sequence, while the cell only expects an instantaneous value.
"""
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.cell = LSTMCell(input_dim, hidden_dim, bias=bias, **factory_kwargs)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
result = []
seq_len = x.shape[0]
for i in range(seq_len):
hidden = self.cell(x[i], hidden)
result.append(hidden[0]) # type: ignore[index]
result_tensor = torch.stack(result, 0)
return result_tensor, hidden
@classmethod
def from_params(cls, *args, **kwargs):
cell = LSTMCell.from_params(*args, **kwargs)
layer = cls(cell.input_size, cell.hidden_size, cell.bias)
layer.cell = cell
return layer
class _LSTMLayer(torch.nn.Module):
r"""A single bi-directional LSTM layer."""
def __init__(
self,
input_dim: int,
hidden_dim: int,
bias: bool = True,
batch_first: bool = False,
bidirectional: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.batch_first = batch_first
self.bidirectional = bidirectional
self.layer_fw = _LSTMSingleLayer(
input_dim, hidden_dim, bias=bias, **factory_kwargs
)
if self.bidirectional:
self.layer_bw = _LSTMSingleLayer(
input_dim, hidden_dim, bias=bias, **factory_kwargs
)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
if self.batch_first:
x = x.transpose(0, 1)
if hidden is None:
hx_fw, cx_fw = (None, None)
else:
hx_fw, cx_fw = hidden
hidden_bw: Optional[Tuple[Tensor, Tensor]] = None
if self.bidirectional:
if hx_fw is None:
hx_bw = None
else:
hx_bw = hx_fw[1]
hx_fw = hx_fw[0]
if cx_fw is None:
cx_bw = None
else:
cx_bw = cx_fw[1]
cx_fw = cx_fw[0]
if hx_bw is not None and cx_bw is not None:
hidden_bw = hx_bw, cx_bw
if hx_fw is None and cx_fw is None:
hidden_fw = None
else:
hidden_fw = torch.jit._unwrap_optional(hx_fw), torch.jit._unwrap_optional(
cx_fw
)
result_fw, hidden_fw = self.layer_fw(x, hidden_fw)
if hasattr(self, "layer_bw") and self.bidirectional:
x_reversed = x.flip(0)
result_bw, hidden_bw = self.layer_bw(x_reversed, hidden_bw)
result_bw = result_bw.flip(0)
result = torch.cat([result_fw, result_bw], result_fw.dim() - 1)
if hidden_fw is None and hidden_bw is None:
h = None
c = None
elif hidden_fw is None:
(h, c) = torch.jit._unwrap_optional(hidden_bw)
elif hidden_bw is None:
(h, c) = torch.jit._unwrap_optional(hidden_fw)
else:
h = torch.stack([hidden_fw[0], hidden_bw[0]], 0) # type: ignore[list-item]
c = torch.stack([hidden_fw[1], hidden_bw[1]], 0) # type: ignore[list-item]
else:
result = result_fw
h, c = torch.jit._unwrap_optional(hidden_fw) # type: ignore[assignment]
if self.batch_first:
result.transpose_(0, 1)
return result, (h, c)
@classmethod
def from_float(cls, other, layer_idx=0, qconfig=None, **kwargs):
r"""
There is no FP equivalent of this class. This function is here just to
mimic the behavior of the `prepare` within the `torch.ao.quantization`
flow.
"""
assert hasattr(other, "qconfig") or (qconfig is not None)
input_size = kwargs.get("input_size", other.input_size)
hidden_size = kwargs.get("hidden_size", other.hidden_size)
bias = kwargs.get("bias", other.bias)
batch_first = kwargs.get("batch_first", other.batch_first)
bidirectional = kwargs.get("bidirectional", other.bidirectional)
layer = cls(input_size, hidden_size, bias, batch_first, bidirectional)
layer.qconfig = getattr(other, "qconfig", qconfig)
wi = getattr(other, f"weight_ih_l{layer_idx}")
wh = getattr(other, f"weight_hh_l{layer_idx}")
bi = getattr(other, f"bias_ih_l{layer_idx}", None)
bh = getattr(other, f"bias_hh_l{layer_idx}", None)
layer.layer_fw = _LSTMSingleLayer.from_params(wi, wh, bi, bh)
if other.bidirectional:
wi = getattr(other, f"weight_ih_l{layer_idx}_reverse")
wh = getattr(other, f"weight_hh_l{layer_idx}_reverse")
bi = getattr(other, f"bias_ih_l{layer_idx}_reverse", None)
bh = getattr(other, f"bias_hh_l{layer_idx}_reverse", None)
layer.layer_bw = _LSTMSingleLayer.from_params(wi, wh, bi, bh)
return layer
[docs]class LSTM(torch.nn.Module):
r"""A quantizable long short-term memory (LSTM).
For the description and the argument types, please, refer to :class:`~torch.nn.LSTM`
Attributes:
layers : instances of the `_LSTMLayer`
.. note::
To access the weights and biases, you need to access them per layer.
See examples below.
Examples::
>>> import torch.ao.nn.quantizable as nnqa
>>> rnn = nnqa.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> # To get the weights:
>>> # xdoctest: +SKIP
>>> print(rnn.layers[0].weight_ih)
tensor([[...]])
>>> print(rnn.layers[0].weight_hh)
AssertionError: There is no reverse path in the non-bidirectional layer
"""
_FLOAT_MODULE = torch.nn.LSTM
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = float(dropout)
self.bidirectional = bidirectional
self.training = False # Default to eval mode. If we want to train, we will explicitly set to training.
num_directions = 2 if bidirectional else 1
if (
not isinstance(dropout, numbers.Number)
or not 0 <= dropout <= 1
or isinstance(dropout, bool)
):
raise ValueError(
"dropout should be a number in range [0, 1] "
"representing the probability of an element being "
"zeroed"
)
if dropout > 0:
warnings.warn(
"dropout option for quantizable LSTM is ignored. "
"If you are training, please, use nn.LSTM version "
"followed by `prepare` step."
)
if num_layers == 1:
warnings.warn(
"dropout option adds dropout after all but last "
"recurrent layer, so non-zero dropout expects "
f"num_layers greater than 1, but got dropout={dropout} "
f"and num_layers={num_layers}"
)
layers = [
_LSTMLayer(
self.input_size,
self.hidden_size,
self.bias,
batch_first=False,
bidirectional=self.bidirectional,
**factory_kwargs,
)
]
for layer in range(1, num_layers):
layers.append(
_LSTMLayer(
self.hidden_size,
self.hidden_size,
self.bias,
batch_first=False,
bidirectional=self.bidirectional,
**factory_kwargs,
)
)
self.layers = torch.nn.ModuleList(layers)
def forward(self, x: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
if self.batch_first:
x = x.transpose(0, 1)
max_batch_size = x.size(1)
num_directions = 2 if self.bidirectional else 1
if hidden is None:
zeros = torch.zeros(
num_directions,
max_batch_size,
self.hidden_size,
dtype=torch.float,
device=x.device,
)
zeros.squeeze_(0)
if x.is_quantized:
zeros = torch.quantize_per_tensor(
zeros, scale=1.0, zero_point=0, dtype=x.dtype
)
hxcx = [(zeros, zeros) for _ in range(self.num_layers)]
else:
hidden_non_opt = torch.jit._unwrap_optional(hidden)
if isinstance(hidden_non_opt[0], Tensor):
hx = hidden_non_opt[0].reshape(
self.num_layers, num_directions, max_batch_size, self.hidden_size
)
cx = hidden_non_opt[1].reshape(
self.num_layers, num_directions, max_batch_size, self.hidden_size
)
hxcx = [
(hx[idx].squeeze(0), cx[idx].squeeze(0))
for idx in range(self.num_layers)
]
else:
hxcx = hidden_non_opt
hx_list = []
cx_list = []
for idx, layer in enumerate(self.layers):
x, (h, c) = layer(x, hxcx[idx])
hx_list.append(torch.jit._unwrap_optional(h))
cx_list.append(torch.jit._unwrap_optional(c))
hx_tensor = torch.stack(hx_list)
cx_tensor = torch.stack(cx_list)
# We are creating another dimension for bidirectional case
# need to collapse it
hx_tensor = hx_tensor.reshape(-1, hx_tensor.shape[-2], hx_tensor.shape[-1])
cx_tensor = cx_tensor.reshape(-1, cx_tensor.shape[-2], cx_tensor.shape[-1])
if self.batch_first:
x = x.transpose(0, 1)
return x, (hx_tensor, cx_tensor)
def _get_name(self):
return "QuantizableLSTM"
@classmethod
def from_float(cls, other, qconfig=None):
assert isinstance(other, cls._FLOAT_MODULE)
assert hasattr(other, "qconfig") or qconfig
observed = cls(
other.input_size,
other.hidden_size,
other.num_layers,
other.bias,
other.batch_first,
other.dropout,
other.bidirectional,
)
observed.qconfig = getattr(other, "qconfig", qconfig)
for idx in range(other.num_layers):
observed.layers[idx] = _LSTMLayer.from_float(
other, idx, qconfig, batch_first=False
)
# Prepare the model
if other.training:
observed.train()
observed = torch.ao.quantization.prepare_qat(observed, inplace=True)
else:
observed.eval()
observed = torch.ao.quantization.prepare(observed, inplace=True)
return observed
@classmethod
def from_observed(cls, other):
# The whole flow is float -> observed -> quantized
# This class does float -> observed only
raise NotImplementedError(
"It looks like you are trying to convert a "
"non-quantizable LSTM module. Please, see "
"the examples on quantizable LSTMs."
)