Source code for torch.ao.nn.qat.modules.linear
# mypy: allow-untyped-defs
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.ao.nn.intrinsic import LinearReLU
from torch.nn.utils.parametrize import (
is_parametrized,
transfer_parametrizations_and_params,
type_before_parametrizations,
)
__all__ = ["Linear"]
[docs]class Linear(nn.Linear):
r"""
A linear module attached with FakeQuantize modules for weight,
used for quantization aware training.
We adopt the same interface as `torch.nn.Linear`, please see
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
for documentation.
Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
default.
Attributes:
weight: fake quant module for weight
"""
_FLOAT_MODULE = nn.Linear
def __init__(
self,
in_features,
out_features,
bias=True,
qconfig=None,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(in_features, out_features, bias, **factory_kwargs)
assert qconfig, "qconfig must be provided for QAT module"
self.qconfig = qconfig
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
def forward(self, input):
return F.linear(input, self.weight_fake_quant(self.weight), self.bias)
[docs] @classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
r"""Create a qat module from a float module or qparams_dict
Args: `mod` a float module, either produced by torch.ao.quantization utilities
or directly from user
"""
assert type_before_parametrizations(mod) == cls._FLOAT_MODULE, (
" qat."
+ cls.__name__
+ ".from_float only works for "
+ cls._FLOAT_MODULE.__name__
)
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
assert mod.qconfig, "Input float module must have a valid qconfig"
if type_before_parametrizations(mod) == LinearReLU:
mod = mod[0]
qconfig = mod.qconfig
qat_linear = cls(
mod.in_features,
mod.out_features,
bias=mod.bias is not None,
qconfig=qconfig,
)
if is_parametrized(mod, "weight"):
transfer_parametrizations_and_params(mod, qat_linear, "weight")
else:
qat_linear.weight = mod.weight
if is_parametrized(mod, "bias"):
transfer_parametrizations_and_params(mod, qat_linear, "bias")
else:
qat_linear.bias = mod.bias
return qat_linear
def to_float(self):
linear = torch.nn.Linear(
self.in_features, self.out_features, self.bias is not None
)
linear.weight = torch.nn.Parameter(self.weight.detach())
if self.bias is not None:
linear.bias = torch.nn.Parameter(self.bias.detach())
linear.train(self.training)
return linear