Shortcuts

torch.nn.attention.bias.causal_upper_left

torch.nn.attention.bias.causal_upper_left(*size)[source][source]

Creates an upper-left triangular causal bias.

This function generates a upper-left triangular matrix to represent causal attention bias with a diagonal offset set so that the inclusive values are aligned to the upper left corner of the matrix. This equivalent to the is_causal=True argument in scaled_dot_product_attention.

The equivalent pytorch code for constructing this bias is:

torch.tril(torch.ones(size, dtype=torch.bool))

For instance, with shape=(3,4), the materialized bias tensor will be:

[[1, 0, 0, 0],
 [1, 1, 0, 0],
 [1, 1, 1, 0]]
Parameters

size – The size of the bias matrix.

Returns

The UPPER_LEFT triangular causal bias variant.

Return type

CausalBias

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources