Shortcuts

Source code for torch.optim.adagrad

# mypy: allow-untyped-defs
from typing import cast, List, Optional, Union

import torch
from torch import Tensor

from .optimizer import (
    _default_to_fused_or_foreach,
    _device_dtype_check_for_fused,
    _differentiable_doc,
    _foreach_doc,
    _get_scalar_dtype,
    _get_value,
    _maximize_doc,
    _params_doc,
    _use_grad_for_differentiable,
    _view_as_real,
    Optimizer,
    ParamsT,
)


__all__ = ["Adagrad", "adagrad"]


[docs]class Adagrad(Optimizer): def __init__( self, params: ParamsT, lr: Union[float, Tensor] = 1e-2, lr_decay: float = 0, weight_decay: float = 0, initial_accumulator_value: float = 0, eps: float = 1e-10, foreach: Optional[bool] = None, *, maximize: bool = False, differentiable: bool = False, fused: Optional[bool] = None, ): if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= lr_decay: raise ValueError(f"Invalid lr_decay value: {lr_decay}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= initial_accumulator_value: raise ValueError( f"Invalid initial_accumulator_value value: {initial_accumulator_value}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") defaults = dict( lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay, initial_accumulator_value=initial_accumulator_value, foreach=foreach, maximize=maximize, differentiable=differentiable, fused=fused, ) super().__init__(params, defaults) if fused: if differentiable: raise RuntimeError("`fused` does not support `differentiable`") if foreach: raise RuntimeError("`fused` and `foreach` cannot be `True` together.") self._need_device_dtype_check_for_fused = True for group in self.param_groups: for p in group["params"]: state = self.state[p] state["step"] = ( torch.zeros( (), dtype=_get_scalar_dtype(is_fused=group["fused"]), device=p.device, ) if group["fused"] else torch.tensor(0.0, dtype=_get_scalar_dtype()) ) init_value = ( complex(initial_accumulator_value, initial_accumulator_value) if torch.is_complex(p) else initial_accumulator_value ) state["sum"] = torch.full_like( p, init_value, memory_format=torch.preserve_format ) def __setstate__(self, state): super().__setstate__(state) # define "fused" for # MYPY error: Name "fused" may be undefined fused = None for group in self.param_groups: group.setdefault("foreach", None) group.setdefault("maximize", False) group.setdefault("differentiable", False) fused = group.setdefault("fused", None) state_values = list(self.state.values()) step_is_tensor = (len(state_values) != 0) and torch.is_tensor( state_values[0]["step"] ) if not step_is_tensor: for s in state_values: s["step"] = torch.tensor( float(s["step"]), dtype=_get_scalar_dtype(is_fused=fused) ) def share_memory(self): for group in self.param_groups: for p in group["params"]: state = self.state[p] state["sum"].share_memory_() def _init_group(self, group, params_with_grad, grads, state_sums, state_steps): has_sparse_grad, has_complex = False, False for p in group["params"]: if p.grad is not None: if group["fused"] and getattr( self, "_need_device_dtype_check_for_fused", True, ): _device_dtype_check_for_fused(p, cuda_unsupported=True) self._need_device_dtype_check_for_fused = False has_sparse_grad |= p.grad.is_sparse has_complex |= torch.is_complex(p) params_with_grad.append(p) grads.append(p.grad) state = self.state[p] state_sums.append(state["sum"]) state_steps.append(state["step"]) return has_sparse_grad, has_complex
[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad: List[Tensor] = [] grads: List[Tensor] = [] state_sums: List[Tensor] = [] state_steps: List[Tensor] = [] has_sparse_grad, has_complex = self._init_group( group, params_with_grad, grads, state_sums, state_steps ) adagrad( params_with_grad, grads, state_sums, state_steps, lr=group["lr"], weight_decay=group["weight_decay"], lr_decay=group["lr_decay"], eps=group["eps"], has_sparse_grad=has_sparse_grad, foreach=group["foreach"], maximize=group["maximize"], differentiable=group["differentiable"], has_complex=has_complex, fused=group["fused"], grad_scale=getattr(self, "grad_scale", None), found_inf=getattr(self, "found_inf", None), ) return loss
Adagrad.__doc__ = ( r"""Implements Adagrad algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\ &\textbf{initialize} : state\_sum_0 \leftarrow \tau \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\ &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization`_. """ + rf""" Args: {_params_doc} lr (float, Tensor, optional): learning rate (default: 1e-2) lr_decay (float, optional): learning rate decay (default: 0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) initial_accumulator_value (float, optional): initial value of the sum of squares of gradients (default: 0) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-10) {_foreach_doc} {_maximize_doc} {_differentiable_doc} fused (bool, optional): whether the fused implementation (CPU only) is used. Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16` are supported. (default: None). Please note that the fused implementations does not support sparse or complex gradients. .. _Adaptive Subgradient Methods for Online Learning and Stochastic Optimization: http://jmlr.org/papers/v12/duchi11a.html """ ) def adagrad( params: List[Tensor], grads: List[Tensor], state_sums: List[Tensor], state_steps: List[Tensor], fused: Optional[bool] = None, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None, # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting these as kwargs for now as functional API is compiled by torch/distributed/optim has_sparse_grad: bool = False, foreach: Optional[bool] = None, differentiable: bool = False, has_complex: bool = False, *, lr: float, weight_decay: float, lr_decay: float, eps: float, maximize: bool, ): r"""Functional API that performs Adagrad algorithm computation. See :class:`~torch.optim.Adagrad` for details. """ if not all(isinstance(t, torch.Tensor) for t in state_steps): raise RuntimeError( "API has changed, `state_steps` argument must contain a list of singleton tensors" ) # Respect when the user inputs False/True for foreach or fused. We only want to change # the default when neither have been user-specified. Note that we default to foreach # and pass False to use_fused. This is not a mistake--we want to give the fused impl # bake-in time before making it the default, even if it is typically faster. if fused is None and foreach is None: _, foreach = _default_to_fused_or_foreach( params, differentiable, use_fused=False ) if fused is None: fused = False if foreach is None: foreach = False if foreach and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with foreach optimizers") if fused and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with fused optimizers") if fused and not torch.jit.is_scripting(): func = _fused_adagrad elif foreach and not torch.jit.is_scripting(): func = _multi_tensor_adagrad else: func = _single_tensor_adagrad func( params, grads, state_sums, state_steps, lr=lr, weight_decay=weight_decay, lr_decay=lr_decay, eps=eps, has_sparse_grad=has_sparse_grad, maximize=maximize, differentiable=differentiable, has_complex=has_complex, grad_scale=grad_scale, found_inf=found_inf, ) def _make_sparse(grad, grad_indices, values): size = grad.size() return torch.sparse_coo_tensor(grad_indices, values, size) def _single_tensor_adagrad( params: List[Tensor], grads: List[Tensor], state_sums: List[Tensor], state_steps: List[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, lr: float, weight_decay: float, lr_decay: float, eps: float, has_sparse_grad: bool, maximize: bool, differentiable: bool, has_complex: bool, ): assert grad_scale is None and found_inf is None for param, grad, state_sum, step_t in zip(params, grads, state_sums, state_steps): # update step step_t += 1 step = _get_value(step_t) grad = grad if not maximize else -grad if weight_decay != 0: if grad.is_sparse: raise RuntimeError( "weight_decay option is not compatible with sparse gradients" ) grad = grad.add(param, alpha=weight_decay) clr = lr / (1 + (step - 1) * lr_decay) if grad.is_sparse: grad = grad.coalesce() # the update is non-linear so indices must be unique grad_indices = grad._indices() grad_values = grad._values() state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) std = state_sum.sparse_mask(grad) std_values = std._values().sqrt_().add_(eps) param.add_( _make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr ) else: is_complex = torch.is_complex(param) if is_complex: grad = torch.view_as_real(grad) state_sum = torch.view_as_real(state_sum) param = torch.view_as_real(param) state_sum.addcmul_(grad, grad, value=1) if differentiable: std = state_sum.sqrt() + eps else: std = state_sum.sqrt().add_(eps) param.addcdiv_(grad, std, value=-clr) if is_complex: param = torch.view_as_complex(param) state_sum = torch.view_as_complex(state_sum) def _multi_tensor_adagrad( params: List[Tensor], grads: List[Tensor], state_sums: List[Tensor], state_steps: List[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, lr: float, weight_decay: float, lr_decay: float, eps: float, has_sparse_grad: bool, maximize: bool, differentiable: bool, has_complex: bool, ): assert not differentiable, "_foreach ops don't support autograd" assert grad_scale is None and found_inf is None # Foreach functions will throw errors if given empty lists if len(params) == 0: return grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype( [params, grads, state_sums, state_steps] # type: ignore[list-item] ) for ( device_params_, device_grads_, device_state_sums_, device_state_steps_, ), _ in grouped_tensorlists.values(): device_params = cast(List[Tensor], device_params_) device_grads = cast(List[Tensor], device_grads_) device_state_sums = cast(List[Tensor], device_state_sums_) device_state_steps = cast(List[Tensor], device_state_steps_) device_has_sparse_grad = has_sparse_grad and any( grad.is_sparse for grad in device_grads ) if device_has_sparse_grad: _single_tensor_adagrad( device_params, device_grads, device_state_sums, device_state_steps, lr=lr, weight_decay=weight_decay, lr_decay=lr_decay, eps=eps, has_sparse_grad=True, maximize=maximize, differentiable=differentiable, has_complex=has_complex, grad_scale=grad_scale, found_inf=found_inf, ) continue # Handle complex parameters if has_complex: _view_as_real(device_params, device_grads, device_state_sums) if maximize: device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] # Update steps # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just # wrapped it once now. The alpha is required to assure we go to the right overload. if not torch._utils.is_compiling() and device_state_steps[0].is_cpu: torch._foreach_add_( device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 ) else: torch._foreach_add_(device_state_steps, 1) if weight_decay != 0: # Re-use the intermediate memory (device_grads) already allocated for maximize if maximize: torch._foreach_add_(device_grads, device_params, alpha=weight_decay) else: device_grads = torch._foreach_add( # type: ignore[assignment] device_grads, device_params, alpha=weight_decay ) minus_clr = [ -lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps ] torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1) std = torch._foreach_sqrt(device_state_sums) torch._foreach_add_(std, eps) if weight_decay != 0 or maximize: # Again, re-use the intermediate memory (device_grads) already allocated torch._foreach_mul_(device_grads, minus_clr) numerator = device_grads else: numerator = torch._foreach_mul(device_grads, minus_clr) # type: ignore[assignment] torch._foreach_addcdiv_(device_params, numerator, std) def _fused_adagrad( params: List[Tensor], grads: List[Tensor], state_sums: List[Tensor], state_steps: List[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, lr: float, weight_decay: float, lr_decay: float, eps: float, has_sparse_grad: bool, maximize: bool, differentiable: bool, has_complex: bool, ) -> None: if not params: return if has_sparse_grad or has_complex: raise RuntimeError("`fused` does not support sparse grad or complex param") if differentiable: raise RuntimeError( "adagrad with fused=True does not support differentiable=True" ) grad_scale_dict = ( {grad_scale.device: grad_scale} if grad_scale is not None else None ) found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, state_sums, state_steps] # type: ignore[list-item] ) for (device, _), ( ( device_params_, device_grads_, device_state_sums_, device_state_steps_, ), _, ) in grouped_tensors.items(): device_params = cast(List[Tensor], device_params_) device_grads = cast(List[Tensor], device_grads_) device_state_sums = cast(List[Tensor], device_state_sums_) device_state_steps = cast(List[Tensor], device_state_steps_) device_grad_scale, device_found_inf = None, None if grad_scale is not None and grad_scale_dict is not None: if device not in grad_scale_dict: grad_scale_dict[device] = grad_scale.to(device, non_blocking=True) # type: ignore[index] device_grad_scale = grad_scale_dict[device] # type: ignore[index] if found_inf is not None and found_inf_dict is not None: if found_inf not in found_inf_dict: found_inf_dict[device] = found_inf.to(device, non_blocking=True) # type: ignore[index] device_found_inf = found_inf_dict[device] # type: ignore[index] torch._foreach_add_(device_state_steps, 1) torch._fused_adagrad_( device_params, device_grads, device_state_sums, device_state_steps, lr=lr, lr_decay=lr_decay, weight_decay=weight_decay, eps=eps, maximize=maximize, grad_scale=device_grad_scale, found_inf=device_found_inf, ) if device_found_inf is not None: torch._foreach_sub_( device_state_steps, [device_found_inf] * len(device_state_steps) )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources