Source code for torch.nn.utils.rnn
import warnings
from collections.abc import Iterable
from typing import (
Any,
Callable,
List,
NamedTuple,
Optional,
overload,
Tuple,
TypeVar,
Union,
)
from typing_extensions import Self
import torch
from torch import _VF, Tensor
__all__ = [
"PackedSequence",
"invert_permutation",
"pack_padded_sequence",
"pad_packed_sequence",
"pad_sequence",
"unpad_sequence",
"pack_sequence",
"unpack_sequence",
]
_T = TypeVar("_T")
_R = TypeVar("_R")
class PackedSequence_(NamedTuple):
data: torch.Tensor
batch_sizes: torch.Tensor
sorted_indices: Optional[torch.Tensor]
unsorted_indices: Optional[torch.Tensor]
def bind(optional: Optional[_T], fn: Callable[[_T], _R]) -> Optional[_R]:
if optional is None:
return None
return fn(optional)
[docs]class PackedSequence(PackedSequence_):
r"""Holds the data and list of :attr:`batch_sizes` of a packed sequence.
All RNN modules accept packed sequences as inputs.
Note:
Instances of this class should never be created manually. They are meant
to be instantiated by functions like :func:`pack_padded_sequence`.
Batch sizes represent the number elements at each sequence step in
the batch, not the varying sequence lengths passed to
:func:`pack_padded_sequence`. For instance, given data ``abc`` and ``x``
the :class:`PackedSequence` would contain data ``axbc`` with
``batch_sizes=[2,1,1]``.
Attributes:
data (Tensor): Tensor containing packed sequence
batch_sizes (Tensor): Tensor of integers holding
information about the batch size at each sequence step
sorted_indices (Tensor, optional): Tensor of integers holding how this
:class:`PackedSequence` is constructed from sequences.
unsorted_indices (Tensor, optional): Tensor of integers holding how this
to recover the original sequences with correct order.
.. note::
:attr:`data` can be on arbitrary device and of arbitrary dtype.
:attr:`sorted_indices` and :attr:`unsorted_indices` must be ``torch.int64``
tensors on the same device as :attr:`data`.
However, :attr:`batch_sizes` should always be a CPU ``torch.int64`` tensor.
This invariant is maintained throughout :class:`PackedSequence` class,
and all functions that construct a :class:`PackedSequence` in PyTorch
(i.e., they only pass in tensors conforming to this constraint).
"""
def __new__(
cls,
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> Self:
return super().__new__(
cls,
*_packed_sequence_init_args(
data, batch_sizes, sorted_indices, unsorted_indices
),
)
# NOTE [ device and dtype of a PackedSequence ]
#
# See the note above in doc string (starting with ":attr:`data` can be on
# arbitrary device...").
def pin_memory(self) -> Self:
# Why not convert `batch_sizes`?
# See NOTE [ device and dtype of a PackedSequence ]
return type(self)(
self.data.pin_memory(),
self.batch_sizes,
bind(self.sorted_indices, lambda t: t.pin_memory()),
bind(self.unsorted_indices, lambda t: t.pin_memory()),
)
@overload
def to(
self,
dtype: torch.dtype,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
@overload
def to(
self,
device: Optional[Union[str, torch.device, int]] = ...,
dtype: Optional[torch.dtype] = ...,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
@overload
def to(
self,
other: Tensor,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
[docs] def to(self, *args: Any, **kwargs: Any) -> Self:
r"""Perform dtype and/or device conversion on `self.data`.
It has similar signature as :meth:`torch.Tensor.to`, except optional
arguments like `non_blocking` and `copy` should be passed as kwargs,
not args, or they will not apply to the index tensors.
.. note::
If the ``self.data`` Tensor already has the correct :class:`torch.dtype`
and :class:`torch.device`, then ``self`` is returned.
Otherwise, returns a copy with the desired configuration.
"""
# Why not convert `batch_sizes`?
# See NOTE [ device and dtype of a PackedSequence ]
data = self.data.to(*args, **kwargs)
if data is self.data:
return self
else:
# Does not forward device or dtype arg/kwargs, device is set from data.device
kwargs = dict(
filter(lambda t: t[0] != "device" and t[0] != "dtype", kwargs.items())
)
sorted_indices = bind(
self.sorted_indices, lambda t: t.to(data.device, **kwargs)
)
unsorted_indices = bind(
self.unsorted_indices, lambda t: t.to(data.device, **kwargs)
)
return type(self)(data, self.batch_sizes, sorted_indices, unsorted_indices)
def cuda(self, *args: Any, **kwargs: Any) -> Self:
# Tests to see if 'cuda' should be added to kwargs
ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(
*args, **kwargs
)
if ex.is_cuda:
return self.to(*args, **kwargs)
kwargs["device"] = "cuda"
return self.to(*args, **kwargs)
def cpu(self, *args: Any, **kwargs: Any) -> Self:
ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(
*args, **kwargs
)
if ex.device.type == "cpu":
return self.to(*args, **kwargs)
kwargs["device"] = "cpu"
return self.to(*args, **kwargs)
def double(self) -> Self:
return self.to(dtype=torch.double)
def float(self) -> Self:
return self.to(dtype=torch.float)
def half(self) -> Self:
return self.to(dtype=torch.half)
def long(self) -> Self:
return self.to(dtype=torch.long)
def int(self) -> Self:
return self.to(dtype=torch.int)
def short(self) -> Self:
return self.to(dtype=torch.short)
def char(self) -> Self:
return self.to(dtype=torch.int8)
def byte(self) -> Self:
return self.to(dtype=torch.uint8)
@property
def is_cuda(self) -> bool:
r"""Return true if `self.data` stored on a gpu."""
return self.data.is_cuda
[docs] def is_pinned(self) -> bool:
r"""Return true if `self.data` stored on in pinned memory."""
return self.data.is_pinned()
# TorchScript doesn't support constructors on named tuples, so we use this helper
# method to construct PackedSequence
def _packed_sequence_init_args(
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
# NB: if unsorted_indices is provided, it should be the inverse permutation
# to sorted_indices. Don't assert it here because the PackedSequence ctor
# should only be used internally.
if unsorted_indices is None:
unsorted_indices = invert_permutation(sorted_indices)
# support being called as `PackedSequence(data, batch_sizes, sorted_indices)`
if batch_sizes is not None:
# TODO: Re-enable this check (.type isn't supported in TorchScript)
if batch_sizes.device.type != "cpu":
raise ValueError(
"batch_sizes should always be on CPU. "
"Instances of PackedSequence should never be created manually. "
"They should be instantiated by functions like pack_sequence "
"and pack_padded_sequences in nn.utils.rnn. "
"https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_sequence"
)
return data, batch_sizes, sorted_indices, unsorted_indices
# support being called as `PackedSequence((data, batch_sizes), *, sorted_indices)`
else:
assert isinstance(data, (list, tuple)) and len(data) == 2
return data[0], data[1], sorted_indices, unsorted_indices
def _packed_sequence_init(
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> PackedSequence:
data, batch_sizes, sorted_indices, unsorted_indices = _packed_sequence_init_args(
data, batch_sizes, sorted_indices, unsorted_indices
)
return PackedSequence(data, batch_sizes, sorted_indices, unsorted_indices)
def invert_permutation(permutation: Optional[Tensor]) -> Optional[Tensor]:
if permutation is None:
return None
output = torch.empty_like(permutation, memory_format=torch.legacy_contiguous_format)
output.scatter_(
0, permutation, torch.arange(0, permutation.numel(), device=permutation.device)
)
return output
[docs]def pack_padded_sequence(
input: Tensor,
lengths: Union[Tensor, List[int]],
batch_first: bool = False,
enforce_sorted: bool = True,
) -> PackedSequence:
r"""Packs a Tensor containing padded sequences of variable length.
:attr:`input` can be of size ``T x B x *`` (if :attr:`batch_first` is ``False``)
or ``B x T x *`` (if :attr:`batch_first` is ``True``) where ``T`` is the length
of the longest sequence, ``B`` is the batch size, and ``*`` is any number of dimensions
(including 0).
For unsorted sequences, use `enforce_sorted = False`. If :attr:`enforce_sorted` is
``True``, the sequences should be sorted by length in a decreasing order, i.e.
``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the shortest
one. `enforce_sorted = True` is only necessary for ONNX export.
It is an inverse operation to :func:`pad_packed_sequence`, and hence :func:`pad_packed_sequence`
can be used to recover the underlying tensor packed in :class:`PackedSequence`.
Note:
This function accepts any input that has at least two dimensions. You
can apply it to pack the labels, and use the output of the RNN with
them to compute the loss directly. A Tensor can be retrieved from
a :class:`PackedSequence` object by accessing its ``.data`` attribute.
Args:
input (Tensor): padded batch of variable length sequences.
lengths (Tensor or list(int)): list of sequence lengths of each batch
element (must be on the CPU if provided as a tensor).
batch_first (bool, optional): if ``True``, the input is expected in ``B x T x *``
format, ``T x B x *`` otherwise.
enforce_sorted (bool, optional): if ``True``, the input is expected to
contain sequences sorted by length in a decreasing order. If
``False``, the input will get sorted unconditionally. Default: ``True``.
Returns:
a :class:`PackedSequence` object
"""
if not isinstance(lengths, torch.Tensor):
if torch._C._get_tracing_state():
warnings.warn(
"pack_padded_sequence has been called with a Python list of "
"sequence lengths. The tracer cannot track the data flow of Python "
"values, and it will treat them as constants, likely rendering "
"the trace incorrect for any other combination of lengths.",
stacklevel=2,
)
lengths = torch.as_tensor(lengths, dtype=torch.int64, device="cpu")
else:
lengths = lengths.to(dtype=torch.int64)
if enforce_sorted:
sorted_indices = None
else:
lengths, sorted_indices = torch.sort(lengths, descending=True)
sorted_indices = sorted_indices.to(input.device)
batch_dim = 0 if batch_first else 1
input = input.index_select(batch_dim, sorted_indices)
data, batch_sizes = _VF._pack_padded_sequence(input, lengths, batch_first)
return _packed_sequence_init(data, batch_sizes, sorted_indices, None)
[docs]def pad_packed_sequence(
sequence: PackedSequence,
batch_first: bool = False,
padding_value: float = 0.0,
total_length: Optional[int] = None,
) -> Tuple[Tensor, Tensor]:
r"""Pad a packed batch of variable length sequences.
It is an inverse operation to :func:`pack_padded_sequence`.
The returned Tensor's data will be of size ``T x B x *`` (if :attr:`batch_first` is ``False``)
or ``B x T x *`` (if :attr:`batch_first` is ``True``) , where ``T`` is the length of the longest
sequence and ``B`` is the batch size.
Example:
>>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
>>> seq = torch.tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]])
>>> lens = [2, 1, 3]
>>> packed = pack_padded_sequence(seq, lens, batch_first=True, enforce_sorted=False)
>>> packed
PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]),
sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0]))
>>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True)
>>> seq_unpacked
tensor([[1, 2, 0],
[3, 0, 0],
[4, 5, 6]])
>>> lens_unpacked
tensor([2, 1, 3])
.. note::
:attr:`total_length` is useful to implement the
``pack sequence -> recurrent network -> unpack sequence`` pattern in a
:class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`.
See :ref:`this FAQ section <pack-rnn-unpack-with-data-parallelism>` for
details.
Args:
sequence (PackedSequence): batch to pad
batch_first (bool, optional): if ``True``, the output will be in ``B x T x *``
format, ``T x B x *`` otherwise.
padding_value (float, optional): values for padded elements.
total_length (int, optional): if not ``None``, the output will be padded to
have length :attr:`total_length`. This method will throw :class:`ValueError`
if :attr:`total_length` is less than the max sequence length in
:attr:`sequence`.
Returns:
Tuple of Tensor containing the padded sequence, and a Tensor
containing the list of lengths of each sequence in the batch.
Batch elements will be re-ordered as they were ordered originally when
the batch was passed to ``pack_padded_sequence`` or ``pack_sequence``.
"""
max_seq_length = sequence.batch_sizes.size(0)
if total_length is not None:
if total_length < max_seq_length:
raise ValueError(
"Expected total_length to be at least the length "
"of the longest sequence in input, but got "
f"total_length={total_length} and max sequence length being {max_seq_length}"
)
max_seq_length = total_length
padded_output, lengths = _VF._pad_packed_sequence(
sequence.data, sequence.batch_sizes, batch_first, padding_value, max_seq_length
)
unsorted_indices = sequence.unsorted_indices
if unsorted_indices is not None:
batch_dim = 0 if batch_first else 1
return (
padded_output.index_select(batch_dim, unsorted_indices),
lengths[unsorted_indices.cpu()],
)
return padded_output, lengths
# NOTE: for JIT-compatibility, we need to be more restrictive here and use specific types instead of Iterable.
[docs]def pad_sequence(
sequences: Union[Tensor, List[Tensor]],
batch_first: bool = False,
padding_value: float = 0.0,
padding_side: str = "right",
) -> Tensor:
r"""Pad a list of variable length Tensors with :attr:`padding_value`.
``pad_sequence`` stacks a list of Tensors along a new dimension, and pads them
to equal length. :attr:`sequences` can be list of sequences with size ``L x *``,
where `L` is length of the sequence and ``*`` is any number of dimensions
(including 0). If :attr:`batch_first` is ``False``, the output is of size
``T x B x *``, and ``B x T x *`` otherwise, where ``B`` is the batch size
(the number of elements in :attr:`sequences`), ``T`` is the length of the longest
sequence.
Example:
>>> from torch.nn.utils.rnn import pad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> pad_sequence([a, b, c]).size()
torch.Size([25, 3, 300])
Note:
This function returns a Tensor of size ``T x B x *`` or ``B x T x *``
where `T` is the length of the longest sequence. This function assumes
trailing dimensions and type of all the Tensors in sequences are same.
Args:
sequences (list[Tensor]): list of variable length sequences.
batch_first (bool, optional): if ``True``, the output will be in ``B x T x *``
format, ``T x B x *`` otherwise.
padding_value (float, optional): value for padded elements. Default: 0.
padding_side (str, optional): the side to pad the sequences on.
Default: "right".
Returns:
Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.
Tensor of size ``B x T x *`` otherwise
"""
if not (torch.jit.is_tracing() or torch.jit.is_scripting()):
# JIT doesn't support `Iterable`
if not isinstance(sequences, Iterable):
msg = (
"pad_sequence: Expected iterable for input sequences, but got arg of type: "
f"{type(sequences)}"
)
raise RuntimeError(msg)
# In JIT context this leads to,
# RuntimeError: cannot statically infer the expected size of a list in this context
sequences = tuple(sequences) # type: ignore[assignment]
else:
# For JIT, we only support Union[Tensor, Tuple[Tensor]]
if isinstance(sequences, torch.Tensor):
sequences = sequences.unbind(0) # type: ignore[assignment]
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
return torch._C._nn.pad_sequence(
sequences, batch_first, padding_value, padding_side # type: ignore[arg-type]
)
[docs]def unpad_sequence(
padded_sequences: Tensor,
lengths: Tensor,
batch_first: bool = False,
) -> List[Tensor]:
r"""Unpad padded Tensor into a list of variable length Tensors.
``unpad_sequence`` unstacks padded Tensor into a list of variable length Tensors.
Example:
>>> from torch.nn.utils.rnn import pad_sequence, unpad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> sequences = [a, b, c]
>>> padded_sequences = pad_sequence(sequences)
>>> lengths = torch.as_tensor([v.size(0) for v in sequences])
>>> unpadded_sequences = unpad_sequence(padded_sequences, lengths)
>>> torch.allclose(sequences[0], unpadded_sequences[0])
True
>>> torch.allclose(sequences[1], unpadded_sequences[1])
True
>>> torch.allclose(sequences[2], unpadded_sequences[2])
True
Args:
padded_sequences (Tensor): padded sequences.
lengths (Tensor): length of original (unpadded) sequences.
batch_first (bool, optional): whether batch dimension first or not. Default: False.
Returns:
a list of :class:`Tensor` objects
"""
unpadded_sequences = []
if not batch_first:
padded_sequences.transpose_(0, 1)
max_length = padded_sequences.shape[1]
idx = torch.arange(max_length, device=lengths.device)
for seq, length in zip(padded_sequences, lengths):
mask = idx < length
unpacked_seq = seq[mask]
unpadded_sequences.append(unpacked_seq)
return unpadded_sequences
[docs]def pack_sequence(
sequences: List[Tensor],
enforce_sorted: bool = True,
) -> PackedSequence:
r"""Packs a list of variable length Tensors.
Consecutive call of the next functions: ``pad_sequence``, ``pack_padded_sequence``.
``sequences`` should be a list of Tensors of size ``L x *``, where `L` is
the length of a sequence and `*` is any number of trailing dimensions,
including zero.
For unsorted sequences, use `enforce_sorted = False`. If ``enforce_sorted``
is ``True``, the sequences should be sorted in the order of decreasing length.
``enforce_sorted = True`` is only necessary for ONNX export.
Example:
>>> from torch.nn.utils.rnn import pack_sequence
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5])
>>> c = torch.tensor([6])
>>> pack_sequence([a, b, c])
PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)
Args:
sequences (list[Tensor]): A list of sequences of decreasing length.
enforce_sorted (bool, optional): if ``True``, checks that the input
contains sequences sorted by length in a decreasing order. If
``False``, this condition is not checked. Default: ``True``.
Returns:
a :class:`PackedSequence` object
"""
lengths = torch.as_tensor([v.size(0) for v in sequences])
return pack_padded_sequence(
pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted
)
[docs]def unpack_sequence(packed_sequences: PackedSequence) -> List[Tensor]:
r"""Unpack PackedSequence into a list of variable length Tensors.
``packed_sequences`` should be a PackedSequence object.
Example:
>>> from torch.nn.utils.rnn import pack_sequence, unpack_sequence
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5])
>>> c = torch.tensor([6])
>>> sequences = [a, b, c]
>>> print(sequences)
[tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]
>>> packed_sequences = pack_sequence(sequences)
>>> print(packed_sequences)
PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)
>>> unpacked_sequences = unpack_sequence(packed_sequences)
>>> print(unpacked_sequences)
[tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]
Args:
packed_sequences (PackedSequence): A PackedSequence object.
Returns:
a list of :class:`Tensor` objects
"""
padded_sequences, lengths = pad_packed_sequence(packed_sequences, batch_first=True)
unpacked_sequences = unpad_sequence(padded_sequences, lengths, batch_first=True)
return unpacked_sequences