Shortcuts

Source code for torch.mtia.memory

# pyre-strict

r"""This package adds support for device memory management implemented in MTIA."""

from typing import Any, Dict, Optional

import torch

from . import _device_t, is_initialized
from ._utils import _get_device_index


[docs]def memory_stats(device: Optional[_device_t] = None) -> Dict[str, Any]: r"""Return a dictionary of MTIA memory allocator statistics for a given device. Args: device (torch.device, str, or int, optional) selected device. Returns statistics for the current device, given by current_device(), if device is None (default). """ if not is_initialized(): return {} return torch._C._mtia_memoryStats(_get_device_index(device, optional=True))
def max_memory_allocated(device: Optional[_device_t] = None) -> int: r"""Return the maximum memory allocated in bytes for a given device. Args: device (torch.device or int, optional): selected device. Returns statistic for the current device, given by :func:`~torch.mtia.current_device`, if :attr:`device` is ``None`` (default). """ return memory_stats(device=device).get("allocated_bytes.all.peak", 0) __all__ = [ "memory_stats", "max_memory_allocated", ]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources