Shortcuts

Source code for torch.fx.node

# Nodes represent a definition of a value in our graph of operators.
import builtins
import inspect
import types
import warnings
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union

import torch
from torch._C import _NodeBase
from torch.fx.operator_schemas import (
    ArgsKwargsPair,
    normalize_function,
    normalize_module,
)

from .._ops import ops as _ops
from ._compatibility import compatibility
from .immutable_collections import immutable_dict, immutable_list


if TYPE_CHECKING:
    from .graph import Graph

__all__ = ["Node", "map_arg", "map_aggregate", "has_side_effect"]

BaseArgumentTypes = Union[
    str,
    int,
    float,
    bool,
    complex,
    torch.dtype,
    torch.Tensor,
    torch.device,
    torch.memory_format,
    torch.layout,
    torch._ops.OpOverload,
    torch.SymInt,
    torch.SymBool,
    torch.SymFloat,
]
base_types = BaseArgumentTypes.__args__  # type: ignore[attr-defined]

Target = Union[Callable[..., Any], str]

Argument = Optional[
    Union[
        Tuple[Any, ...],  # actually Argument, but mypy can't represent recursive types
        List[Any],  # actually Argument
        Dict[str, Any],  # actually Argument
        slice,  # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
        range,
        "Node",
        BaseArgumentTypes,
    ]
]

_legal_ops = dict.fromkeys(
    [
        "placeholder",
        "call_method",
        "call_module",
        "call_function",
        "get_attr",
        "output",
        "root",
    ]
)

_side_effectful_need_to_be_preserved_pre_dispatch: Set[Callable] = {
    torch._C._set_grad_enabled,
    torch.amp._enter_autocast,
    torch.amp._exit_autocast,
}

# TODO: Either refactor this into 2 functions 1 dce for functional graphs and 1 dce for all graphs,
# or add logic to correctly mark all inplace ops as side effectful.
_side_effectful_functions: Set[Callable] = {
    torch._assert,
    torch._assert_async,
    _ops.aten._assert_async.msg,
    _ops.aten._assert_scalar.default,
    _ops.aten._assert_tensor_metadata.default,
    _ops.aten.sym_constrain_range.default,
    _ops.aten.sym_constrain_range_for_size.default,
    _ops.profiler._record_function_enter,
    _ops.profiler._record_function_enter_new,
    _ops.profiler._record_function_exit,
    _ops.inductor.accumulate_grad_.default,
} | _side_effectful_need_to_be_preserved_pre_dispatch
if hasattr(_ops.inductor, "resize_storage_bytes_"):
    _side_effectful_functions.add(_ops.inductor.resize_storage_bytes_.default)


@compatibility(is_backward_compatible=False)
def has_side_effect(fn: Callable) -> Callable:
    _side_effectful_functions.add(fn)
    return fn


# this is fixed on master, WAR for 1.5
def _find_module_of_method(orig_method: Callable[..., Any]) -> str:
    name = orig_method.__name__
    module = orig_method.__module__
    if module is not None:
        return module
    for guess in [torch, torch.nn.functional]:
        if getattr(guess, name, None) is orig_method:
            return guess.__name__
    raise RuntimeError(f"cannot find module for {orig_method}")


# Borrowed from CPython typing module
# https://github.com/python/cpython/blob/f90dc36c15d7fee0efaf6d39e97be0bdf2683e93/Lib/typing.py#L156
def _type_repr(obj: object) -> str:
    """Return the repr() of an object, special-casing types (internal helper).
    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    if isinstance(obj, type):
        if obj.__module__ == "builtins":
            return obj.__qualname__
        return f"{obj.__module__}.{obj.__qualname__}"
    if obj is ...:
        return "..."
    if isinstance(obj, types.FunctionType):
        return obj.__name__
    return repr(obj)


def _get_qualified_name(func: Callable[..., Any]) -> str:
    # things like getattr just appear in builtins
    if getattr(builtins, func.__name__, None) is func:
        return func.__name__
    # torch.Tensor.{fn}
    if isinstance(
        func, (types.MethodDescriptorType, types.WrapperDescriptorType)
    ) and func is getattr(torch.Tensor, func.__name__, None):
        return f"torch.Tensor.{func.__name__}"
    name = func.__name__
    if name == "<lambda>":
        # For lambdas, try to get their defining name in the module
        try:
            name = inspect.getsource(func).split("=")[0].strip()
        except Exception as e:
            raise RuntimeError("Unable to represent lambda") from e
    module = _find_module_of_method(func)
    module = module.replace(
        "torch._ops", "torch.ops"
    )  # WAR for bug in how torch.ops assigns module
    # Fixup segment_reduce mismatch
    if module == "torch" and name == "segment_reduce":
        name = "_" + name
    return f"{module}.{name}"


def _format_arg(arg: object, max_list_len: float = float("inf")) -> str:
    if hasattr(arg, "_custom_fx_repr_fn"):
        return arg._custom_fx_repr_fn()
    elif isinstance(arg, list):
        items = ", ".join(
            _format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len
        )
        maybe_len = (
            "" if len(arg) < max_list_len + 1 else f", ...[total_len={len(arg)}]"
        )
        return f"[{items}{maybe_len}]"
    elif isinstance(arg, tuple):
        items = ", ".join(
            _format_arg(a) for idx, a in enumerate(arg) if idx < max_list_len
        )
        maybe_len = (
            "" if len(arg) < max_list_len + 1 else f", ...[total_len={len(arg)}]"
        )
        maybe_comma = "," if len(arg) == 1 else ""
        return f"({items}{maybe_comma}{maybe_len})"
    elif isinstance(arg, dict):
        items_str = ", ".join(f"{k}: {_format_arg(v)}" for k, v in arg.items())
        return f"{{{items_str}}}"

    if isinstance(arg, Node):
        return "%" + str(arg)
    else:
        return str(arg)


[docs]@compatibility(is_backward_compatible=True) class Node(_NodeBase): """ ``Node`` is the data structure that represents individual operations within a ``Graph``. For the most part, Nodes represent callsites to various entities, such as operators, methods, and Modules (some exceptions include nodes that specify function inputs and outputs). Each ``Node`` has a function specified by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows: - ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on. ``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to the function parameters (e.g. ``x``) in the graph printout. - ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy. ``args`` and ``kwargs`` are don't-care - ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function, following the Python calling convention - ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call. ``args`` and ``kwargs`` represent the arguments to invoke the module on, *excluding the self argument*. - ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on, *including the self argument* - ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement in the Graph printout. """ _args: Tuple["Argument", ...] _kwargs: Dict[str, "Argument"] graph: "Graph" name: str op: str target: "Target" _input_nodes: Dict["Node", None] users: Dict["Node", None] type: Optional[Any] _sort_key: Any _repr_fn: Optional[Callable[["Node"], str]] meta: Dict[str, Any] @compatibility(is_backward_compatible=True) def __init__( self, graph: "Graph", name: str, op: str, target: "Target", args: Tuple["Argument", ...], kwargs: Dict[str, "Argument"], return_type: Optional[Any] = None, ) -> None: """ Instantiate an instance of ``Node``. Note: most often, you want to use the Graph APIs, i.e. ``Graph.call_module``, ``Graph.call_method``, etc. rather than instantiating a ``Node`` directly. Args: graph (Graph): The ``Graph`` to which this ``Node`` should belong. name (str): The name to which the output of this ``Node`` should be assigned op (str): The opcode for this ``Node``. Can be one of 'placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output' target ('Target'): The target this op should call. See the broader ``Node`` docstring for more details. args (Tuple['Argument']): The args to be passed to ``target`` kwargs (Dict[str, 'Argument']): The kwargs to be passed to ``target`` return_type (Optional[Any]): The python type expression representing the type of the output of this node. This field can be used for annotation of values in the generated code or for other types of analyses. """ assert op in _legal_ops if op == "call_function": if not callable(target): raise ValueError( f"Node [graph = {graph}, name = '{name}'] target {target} has type {torch.typename(target)} " "but a Callable is expected" ) else: if not isinstance(target, str): raise ValueError( f"Node [graph = {graph}, name = '{name}'] target {target} has type {torch.typename(target)} " "but a str is expected" ) super().__init__() # bypass Node.__setattr__ for perf and so that it doesn't need to handle half-built objects assign = object.__setattr__ assign(self, "graph", graph) assign(self, "name", name) # unique name of value being created assign( self, "op", op ) # the kind of operation = placeholder|call_method|call_module|call_function|get_attr assign( self, "target", target ) # for method/module/function, the name of the method/module/function/attr # being invoked, e.g add, layer1, or torch.add # All `Node`-valued inputs. Key is the Node, value is don't-care. # The public API for this is `all_input_nodes`, this private attribute # should not be accessed directly. assign(self, "_input_nodes", {}) self.__update_args_kwargs(args, kwargs) # All of the nodes that use the value produced by this Node # Note one user may correspond to several uses, e.g. the node fo ``x + x`` # would appear once here, but represents two uses. # # Is a dict to act as an "ordered set". Keys are significant, value dont-care assign(self, "users", {}) # Type expression representing the output value of this node. # This should contain the same class of Type objects that would appear # as type annotations for function inputs/outputs. # # For placeholder nodes, this value will be used to type-annotate the # generated function parameters. # For the return node, this value will be used to type-annotate the # generated function return type. (Note this is a special case. ``return`` # does not produce a value, it's more of a notation. Thus, this value # describes the type of args[0] in the ``return`` node. assign(self, "type", return_type) assign(self, "_sort_key", ()) # If set, use this fn to print this node assign(self, "_repr_fn", None) # Dictionary to store metadata passes need to do their # transformations. This metadata is preserved across node copies assign(self, "meta", {}) def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() state["_erased"] = self._erased state["_prev"] = self._prev state["_next"] = self._next return state def __setstate__(self, state: Dict[str, Any]) -> None: _erased = state.pop("_erased") _prev = state.pop("_prev") _next = state.pop("_next") self.__dict__.update(state) self._erased = _erased self._prev = _prev self._next = _next @property def next(self) -> "Node": """ Returns the next ``Node`` in the linked list of Nodes. Returns: The next ``Node`` in the linked list of Nodes. """ return self._next @property def prev(self) -> "Node": """ Returns the previous ``Node`` in the linked list of Nodes. Returns: The previous ``Node`` in the linked list of Nodes. """ return self._prev
[docs] @compatibility(is_backward_compatible=True) def prepend(self, x: "Node") -> None: """ Insert x before this node in the list of nodes in the graph. Example:: Before: p -> self bx -> x -> ax After: p -> x -> self bx -> ax Args: x (Node): The node to put before this node. Must be a member of the same graph. """ assert self.graph == x.graph, "Attempting to move a Node into a different Graph" if self == x: warnings.warn( "Trying to prepend a node to itself. This behavior has no effect on the graph." ) return x._remove_from_list() p = self._prev p._next, x._prev = x, p x._next, self._prev = self, x # compute x._sort_key psk = x._prev._sort_key nsk = x._next._sort_key if len(psk) > len(nsk): idx: int *prefix, idx = psk[: len(nsk) + 1] x._sort_key = (*prefix, idx + 1) elif len(psk) < len(nsk): *prefix, idx = nsk[: len(psk) + 1] x._sort_key = (*prefix, idx - 1) else: # same length, increase length by 1 x._sort_key = (*psk, 0)
def __gt__(self, other: "Node") -> bool: return self._sort_key > other._sort_key def __lt__(self, other: "Node") -> bool: return self._sort_key < other._sort_key def __ge__(self, other: "Node") -> bool: return self > other or self == other def __le__(self, other: "Node") -> bool: return self < other or self == other
[docs] @compatibility(is_backward_compatible=True) def append(self, x: "Node") -> None: """ Insert ``x`` after this node in the list of nodes in the graph. Equivalent to ``self.next.prepend(x)`` Args: x (Node): The node to put after this node. Must be a member of the same graph. """ self._next.prepend(x)
def _remove_from_list(self) -> None: p, n = self._prev, self._next p._next, n._prev = n, p @property def args(self) -> Tuple[Argument, ...]: """ The tuple of arguments to this ``Node``. The interpretation of arguments depends on the node's opcode. See the :class:`Node` docstring for more information. Assignment to this property is allowed. All accounting of uses and users is updated automatically on assignment. """ return self._args @args.setter def args(self, a: Tuple[Argument, ...]) -> None: """ Set the tuple of arguments to this Node. The interpretation of arguments depends on the node's opcode. See the ``fx.Graph`` docstring for more information. """ # DO NOT CALL `__update_args_kwargs` directly. The correct way to # set `args` is via direct assignment, i.e. `node.args = new_args` self.__update_args_kwargs(a, self._kwargs) @property def kwargs(self) -> Dict[str, Argument]: """ The dict of keyword arguments to this ``Node``. The interpretation of arguments depends on the node's opcode. See the :class:`Node` docstring for more information. Assignment to this property is allowed. All accounting of uses and users is updated automatically on assignment. """ return self._kwargs @kwargs.setter def kwargs(self, k: Dict[str, Argument]) -> None: """ Set the dict of kwargs to this Node. The interpretation of arguments depends on the node's opcode. See the ``fx.Graph`` docstring for more information. """ # DO NOT CALL `__update_args_kwargs` directly. The correct way to # set `args` is via direct assignment, i.e. `node.kwargs = new_kwargs` self.__update_args_kwargs(self._args, k) @property def all_input_nodes(self) -> List["Node"]: """ Return all Nodes that are inputs to this Node. This is equivalent to iterating over ``args`` and ``kwargs`` and only collecting the values that are Nodes. Returns: List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this ``Node``, in that order. """ return list(self._input_nodes.keys())
[docs] @compatibility(is_backward_compatible=True) def update_arg(self, idx: int, arg: Argument) -> None: """ Update an existing positional argument to contain the new value ``arg``. After calling, ``self.args[idx] == arg``. Args: idx (int): The index into ``self.args`` of the element to update arg (Argument): The new argument value to write into ``args`` """ args = list(self.args) args[idx] = arg self.args = tuple(args)
[docs] @compatibility(is_backward_compatible=True) def insert_arg(self, idx: int, arg: Argument) -> None: """ Insert an positional argument to the argument list with given index. Args: idx (int): The index of the element in ``self.args`` to be inserted before. arg (Argument): The new argument value to insert into ``args`` """ assert ( 0 <= idx <= len(self.args) ), "insert_args index must be between 0 and len(self.args)" args_left = self.args[:idx] args_right = self.args[idx:] self._args = args_left + (arg,) + args_right _new_input_nodes: Dict[Node, None] = {} map_arg(arg, _new_input_nodes.setdefault) for new_use in _new_input_nodes.keys(): if new_use not in self._input_nodes: self._input_nodes.setdefault(new_use) new_use.users.setdefault(self)
[docs] @compatibility(is_backward_compatible=True) def update_kwarg(self, key: str, arg: Argument) -> None: """ Update an existing keyword argument to contain the new value ``arg``. After calling, ``self.kwargs[key] == arg``. Args: key (str): The key in ``self.kwargs`` of the element to update arg (Argument): The new argument value to write into ``kwargs`` """ self.kwargs = {**self.kwargs, key: arg}
@property def stack_trace(self) -> Optional[str]: """ Return the Python stack trace that was recorded during tracing, if any. When traced with fx.Tracer, this property is usually populated by `Tracer.create_proxy`. To record stack traces during tracing for debug purposes, set `record_stack_traces = True` on the `Tracer` instance. When traced with dynamo, this property will be populated by default by `OutputGraph.create_proxy`. stack_trace would have the innermost frame at the end of the string. """ return self.meta.get("stack_trace", None) @stack_trace.setter def stack_trace(self, trace: Optional[str]) -> None: self.meta["stack_trace"] = trace def __update_args_kwargs( self, new_args: Tuple["Argument", ...], new_kwargs: Dict[str, "Argument"] ) -> None: """ This API is internal. Do *not* call it directly. """ def update_users_and_input_nodes(n: Any) -> Any: if isinstance(n, Node): self._input_nodes.setdefault(n) n.users.setdefault(self) return n # Clear prior users and input_nodes for old_use in self._input_nodes.keys(): old_use.users.pop(self) object.__setattr__(self, "_input_nodes", {}) # bypass Node.__setattr__ # We do three things in a single pass of the args # - Normalize list->immutable_list, dict->immutable_dict, etc # - Populate self._input_nodes # - Populate arg.users[self] for each arg object.__setattr__( self, "_args", map_aggregate(new_args, update_users_and_input_nodes) ) object.__setattr__( self, "_kwargs", map_aggregate(new_kwargs, update_users_and_input_nodes) ) def __repr__(self) -> str: if self._repr_fn: return self._repr_fn(self) return self.name def _pretty_print_target(self, target: object) -> str: """ Make target printouts more user-friendly. 1) builtins will be printed as `builtins.xyz` 2) operators will be printed as `operator.xyz` 3) other callables will be printed with qualified name, e.g. torch.add """ if isinstance(target, str): return target if hasattr(target, "__module__"): name = getattr(target, "__name__", None) if name is None: # Just to be defensive, if we don't have `__name__`, get the # qualname. Not sure if this happens for any members of `operator` # or `builtins`. This fallback path is not as good, since e.g. # things in `operator` have `_operator` as their __module__. # TODO: THIS IS BROKEN: _get_qualified_name calls `__name__` return _get_qualified_name(target) # type: ignore[arg-type] if target.__module__ == "builtins": return f"builtins.{name}" elif target.__module__ == "_operator": return f"operator.{name}" return _get_qualified_name(target) # type: ignore[arg-type]
[docs] @compatibility(is_backward_compatible=True) def format_node( self, placeholder_names: Optional[List[str]] = None, maybe_return_typename: Optional[List[str]] = None, ) -> Optional[str]: """ Return a descriptive string representation of ``self``. This method can be used with no arguments as a debugging utility. This function is also used internally in the ``__str__`` method of ``Graph``. Together, the strings in ``placeholder_names`` and ``maybe_return_typename`` make up the signature of the autogenerated ``forward`` function in this Graph's surrounding GraphModule. ``placeholder_names`` and ``maybe_return_typename`` should not be used otherwise. Args: placeholder_names: A list that will store formatted strings representing the placeholders in the generated ``forward`` function. Internal use only. maybe_return_typename: A single-element list that will store a formatted string representing the output of the generated ``forward`` function. Internal use only. Returns: str: If 1) we're using ``format_node`` as an internal helper in the ``__str__`` method of ``Graph``, and 2) ``self`` is a placeholder Node, return ``None``. Otherwise, return a descriptive string representation of the current Node. """ if self.op == "placeholder": assert isinstance(self.target, str) arg_str = self.target arg_str += arg_str + f": {_type_repr(self.type)}" if self.type else "" if placeholder_names: placeholder_names.append(arg_str) return None maybe_typename = f"{_type_repr(self.type)} " if self.type else "" default_val = "(default=" + str(self.args[0]) + ")" if self.args else "" return f"%{self.name} : {maybe_typename}[num_users={len(self.users)}] = {self.op}[target={self.target}]{default_val}" elif self.op == "get_attr": maybe_typename = ( f"{_type_repr(self.type)} " if self.type is not None else "" ) return ( f"%{self.name} : {maybe_typename}[num_users={len(self.users)}] = " f"{self.op}[target={self._pretty_print_target(self.target)}]" ) elif self.op == "output": if self.type and maybe_return_typename: maybe_return_typename[0] = f" -> {_type_repr(self.type)}" return f"return {self.args[0]}" else: maybe_typename = ( f"{_type_repr(self.type)} " if self.type is not None else "" ) return ( f"%{self.name} : {maybe_typename}[num_users={len(self.users)}] = " f"{self.op}[target={self._pretty_print_target(self.target)}](" f"args = {_format_arg(self.args)}, kwargs = {_format_arg(self.kwargs)})" )
[docs] @compatibility(is_backward_compatible=True) def replace_all_uses_with( self, replace_with: "Node", delete_user_cb: Callable[["Node"], bool] = lambda user: True, *, propagate_meta: bool = False, ) -> List["Node"]: """ Replace all uses of ``self`` in the Graph with the Node ``replace_with``. Args: replace_with (Node): The node to replace all uses of ``self`` with. delete_user_cb (Callable): Callback that is called to determine whether a given user of the self node should be removed. propagate_meta (bool): Whether or not to copy all properties on the .meta field of the original node onto the replacement node. For safety, this is only valid to do if the replacement node doesn't already have an existing .meta field. Returns: The list of Nodes on which this change was made. """ if propagate_meta: assert len(replace_with.meta) == 0, ( "Called node.replace_all_uses_with(replace_with, propagate_meta=True), " "but replace_with already has .meta keys" ) for k, v in self.meta.items(): replace_with.meta[k] = v to_process = list(self.users) skipped = [] m = self.graph.owning_module for use_node in to_process: if not delete_user_cb(use_node): skipped.append(use_node) continue def maybe_replace_node(n: Node) -> Node: if n == self: return replace_with else: return n if getattr(m, "_replace_hook", None): m._replace_hook(old=self, new=replace_with.name, user=use_node) new_args = map_arg(use_node.args, maybe_replace_node) new_kwargs = map_arg(use_node.kwargs, maybe_replace_node) assert isinstance(new_args, tuple) assert isinstance(new_kwargs, dict) use_node.__update_args_kwargs(new_args, new_kwargs) assert len(self.users) - len(skipped) == 0 return [n for n in to_process if n not in skipped]
[docs] @compatibility(is_backward_compatible=False) def is_impure(self) -> bool: """ Returns whether this op is impure, i.e. if its op is a placeholder or output, or if a call_function or call_module which is impure. Returns: bool: If the op is impure or not. """ if self.op in {"placeholder", "output"}: return True # Check if an impure function based on schema. if self.op == "call_function": schema = getattr(self.target, "_schema", None) schema_mutable = schema is not None and schema.is_mutable return schema_mutable or self.target in _side_effectful_functions # Check if an impure module. if self.op == "call_module": assert ( self.graph.owning_module is not None ), "self.graph.owning_module not set for purity check" target_mod = self.graph.owning_module.get_submodule(self.target) assert ( target_mod is not None ), f"Did not find expected submodule target {self.target}" return getattr(target_mod, "_is_impure", False) return False
[docs] @compatibility(is_backward_compatible=False) def normalized_arguments( self, root: torch.nn.Module, arg_types: Optional[Tuple[Any]] = None, kwarg_types: Optional[Dict[str, Any]] = None, normalize_to_only_use_kwargs: bool = False, ) -> Optional[ArgsKwargsPair]: """ Returns normalized arguments to Python targets. This means that `args/kwargs` will be matched up to the module/functional's signature and return exclusively kwargs in positional order if `normalize_to_only_use_kwargs` is true. Also populates default values. Does not support positional-only parameters or varargs parameters. Supports module calls. May require `arg_types` and `kwarg_types` in order to disambiguate overloads. Args: root (torch.nn.Module): Module upon which to resolve module targets. arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs. Returns: Returns NamedTuple ArgsKwargsPair, or `None` if not successful. """ if self.op == "call_function": assert callable(self.target) return normalize_function( self.target, self.args, # type: ignore[arg-type] self.kwargs, arg_types, kwarg_types, ) elif self.op == "call_module": assert isinstance(self.target, str) return normalize_module(root, self.target, self.args, self.kwargs) # type: ignore[arg-type] return None
[docs] @compatibility(is_backward_compatible=True) def replace_input_with(self, old_input: "Node", new_input: "Node") -> None: """ Loop through input nodes of ``self``, and replace all instances of ``old_input`` with ``new_input``. Args: old_input (Node): The old input node to be replaced. new_input (Node): The new input node to replace ``old_input``. """ def maybe_replace_node(n: Node) -> Node: return new_input if n == old_input else n m = self.graph.owning_module if getattr(m, "_replace_hook", None): m._replace_hook(old=old_input, new=new_input.name, user=self) new_args = map_arg(self.args, maybe_replace_node) new_kwargs = map_arg(self.kwargs, maybe_replace_node) assert isinstance(new_args, tuple) assert isinstance(new_kwargs, dict) self.__update_args_kwargs(new_args, new_kwargs)
def _rename(self, candidate: str) -> None: if candidate == self.name: return name = self.graph._graph_namespace.create_name(candidate, None) self.name = name self.graph._graph_namespace._rename_object(self, name) def __setattr__(self, name: str, value: Any) -> None: if name == "name" and hasattr(self, "name"): m = self.graph.owning_module if getattr(m, "_replace_hook", None): assert isinstance(value, str) for user in self.users: m._replace_hook(old=self, new=value, user=user) update = False if ( hasattr(self, name) and hasattr(self.graph, "_find_nodes_lookup_table") and self in self.graph._find_nodes_lookup_table ): update = True self.graph._find_nodes_lookup_table.remove(self) object.__setattr__(self, name, value) if update: self.graph._find_nodes_lookup_table.insert(self)
@compatibility(is_backward_compatible=True) def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument: """ Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """ assert callable(fn), "torch.fx.map_arg(a, fn): fn must be a callable" return map_aggregate(a, lambda x: fn(x) if isinstance(x, Node) else x) @compatibility(is_backward_compatible=True) def map_aggregate(a: Argument, fn: Callable[[Argument], Argument]) -> Argument: """ Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """ if isinstance(a, tuple): t = tuple([map_aggregate(elem, fn) for elem in a]) # Support NamedTuple (if it has `_fields`) by repacking into original type. return t if not hasattr(a, "_fields") else type(a)(*t) # type: ignore[arg-type] elif isinstance(a, list): return immutable_list([map_aggregate(elem, fn) for elem in a]) elif isinstance(a, dict): rv = immutable_dict() for k, v in a.items(): dict.__setitem__(rv, k, map_aggregate(v, fn)) return rv elif isinstance(a, slice): return slice( map_aggregate(a.start, fn), map_aggregate(a.stop, fn), map_aggregate(a.step, fn), ) else: return fn(a)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources