Source code for torch.distributions.wishart
# mypy: allow-untyped-defs
import math
import warnings
from numbers import Number
from typing import Optional, Union
import torch
from torch import nan
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.multivariate_normal import _precision_to_scale_tril
from torch.distributions.utils import lazy_property
from torch.types import _size
__all__ = ["Wishart"]
_log_2 = math.log(2)
def _mvdigamma(x: torch.Tensor, p: int) -> torch.Tensor:
assert x.gt((p - 1) / 2).all(), "Wrong domain for multivariate digamma function."
return torch.digamma(
x.unsqueeze(-1)
- torch.arange(p, dtype=x.dtype, device=x.device).div(2).expand(x.shape + (-1,))
).sum(-1)
def _clamp_above_eps(x: torch.Tensor) -> torch.Tensor:
# We assume positive input for this function
return x.clamp(min=torch.finfo(x.dtype).eps)
[docs]class Wishart(ExponentialFamily):
r"""
Creates a Wishart distribution parameterized by a symmetric positive definite matrix :math:`\Sigma`,
or its Cholesky decomposition :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`
Example:
>>> # xdoctest: +SKIP("FIXME: scale_tril must be at least two-dimensional")
>>> m = Wishart(torch.Tensor([2]), covariance_matrix=torch.eye(2))
>>> m.sample() # Wishart distributed with mean=`df * I` and
>>> # variance(x_ij)=`df` for i != j and variance(x_ij)=`2 * df` for i == j
Args:
df (float or Tensor): real-valued parameter larger than the (dimension of Square matrix) - 1
covariance_matrix (Tensor): positive-definite covariance matrix
precision_matrix (Tensor): positive-definite precision matrix
scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal
Note:
Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or
:attr:`scale_tril` can be specified.
Using :attr:`scale_tril` will be more efficient: all computations internally
are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or
:attr:`precision_matrix` is passed instead, it is only used to compute
the corresponding lower triangular matrices using a Cholesky decomposition.
'torch.distributions.LKJCholesky' is a restricted Wishart distribution.[1]
**References**
[1] Wang, Z., Wu, Y. and Chu, H., 2018. `On equivalence of the LKJ distribution and the restricted Wishart distribution`.
[2] Sawyer, S., 2007. `Wishart Distributions and Inverse-Wishart Sampling`.
[3] Anderson, T. W., 2003. `An Introduction to Multivariate Statistical Analysis (3rd ed.)`.
[4] Odell, P. L. & Feiveson, A. H., 1966. `A Numerical Procedure to Generate a SampleCovariance Matrix`. JASA, 61(313):199-203.
[5] Ku, Y.-C. & Bloomfield, P., 2010. `Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX`.
"""
arg_constraints = {
"covariance_matrix": constraints.positive_definite,
"precision_matrix": constraints.positive_definite,
"scale_tril": constraints.lower_cholesky,
"df": constraints.greater_than(0),
}
support = constraints.positive_definite
has_rsample = True
_mean_carrier_measure = 0
def __init__(
self,
df: Union[torch.Tensor, Number],
covariance_matrix: Optional[torch.Tensor] = None,
precision_matrix: Optional[torch.Tensor] = None,
scale_tril: Optional[torch.Tensor] = None,
validate_args=None,
):
assert (covariance_matrix is not None) + (scale_tril is not None) + (
precision_matrix is not None
) == 1, "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."
param = next(
p
for p in (covariance_matrix, precision_matrix, scale_tril)
if p is not None
)
if param.dim() < 2:
raise ValueError(
"scale_tril must be at least two-dimensional, with optional leading batch dimensions"
)
if isinstance(df, Number):
batch_shape = torch.Size(param.shape[:-2])
self.df = torch.tensor(df, dtype=param.dtype, device=param.device)
else:
batch_shape = torch.broadcast_shapes(param.shape[:-2], df.shape)
self.df = df.expand(batch_shape)
event_shape = param.shape[-2:]
if self.df.le(event_shape[-1] - 1).any():
raise ValueError(
f"Value of df={df} expected to be greater than ndim - 1 = {event_shape[-1]-1}."
)
if scale_tril is not None:
self.scale_tril = param.expand(batch_shape + (-1, -1))
elif covariance_matrix is not None:
self.covariance_matrix = param.expand(batch_shape + (-1, -1))
elif precision_matrix is not None:
self.precision_matrix = param.expand(batch_shape + (-1, -1))
self.arg_constraints["df"] = constraints.greater_than(event_shape[-1] - 1)
if self.df.lt(event_shape[-1]).any():
warnings.warn(
"Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim."
)
super().__init__(batch_shape, event_shape, validate_args=validate_args)
self._batch_dims = [-(x + 1) for x in range(len(self._batch_shape))]
if scale_tril is not None:
self._unbroadcasted_scale_tril = scale_tril
elif covariance_matrix is not None:
self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
else: # precision_matrix is not None
self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)
# Chi2 distribution is needed for Bartlett decomposition sampling
self._dist_chi2 = torch.distributions.chi2.Chi2(
df=(
self.df.unsqueeze(-1)
- torch.arange(
self._event_shape[-1],
dtype=self._unbroadcasted_scale_tril.dtype,
device=self._unbroadcasted_scale_tril.device,
).expand(batch_shape + (-1,))
)
)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Wishart, _instance)
batch_shape = torch.Size(batch_shape)
cov_shape = batch_shape + self.event_shape
new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril.expand(cov_shape)
new.df = self.df.expand(batch_shape)
new._batch_dims = [-(x + 1) for x in range(len(batch_shape))]
if "covariance_matrix" in self.__dict__:
new.covariance_matrix = self.covariance_matrix.expand(cov_shape)
if "scale_tril" in self.__dict__:
new.scale_tril = self.scale_tril.expand(cov_shape)
if "precision_matrix" in self.__dict__:
new.precision_matrix = self.precision_matrix.expand(cov_shape)
# Chi2 distribution is needed for Bartlett decomposition sampling
new._dist_chi2 = torch.distributions.chi2.Chi2(
df=(
new.df.unsqueeze(-1)
- torch.arange(
self.event_shape[-1],
dtype=new._unbroadcasted_scale_tril.dtype,
device=new._unbroadcasted_scale_tril.device,
).expand(batch_shape + (-1,))
)
)
super(Wishart, new).__init__(batch_shape, self.event_shape, validate_args=False)
new._validate_args = self._validate_args
return new
@lazy_property
def scale_tril(self):
return self._unbroadcasted_scale_tril.expand(
self._batch_shape + self._event_shape
)
@lazy_property
def covariance_matrix(self):
return (
self._unbroadcasted_scale_tril
@ self._unbroadcasted_scale_tril.transpose(-2, -1)
).expand(self._batch_shape + self._event_shape)
@lazy_property
def precision_matrix(self):
identity = torch.eye(
self._event_shape[-1],
device=self._unbroadcasted_scale_tril.device,
dtype=self._unbroadcasted_scale_tril.dtype,
)
return torch.cholesky_solve(identity, self._unbroadcasted_scale_tril).expand(
self._batch_shape + self._event_shape
)
@property
def mean(self):
return self.df.view(self._batch_shape + (1, 1)) * self.covariance_matrix
@property
def mode(self):
factor = self.df - self.covariance_matrix.shape[-1] - 1
factor[factor <= 0] = nan
return factor.view(self._batch_shape + (1, 1)) * self.covariance_matrix
@property
def variance(self):
V = self.covariance_matrix # has shape (batch_shape x event_shape)
diag_V = V.diagonal(dim1=-2, dim2=-1)
return self.df.view(self._batch_shape + (1, 1)) * (
V.pow(2) + torch.einsum("...i,...j->...ij", diag_V, diag_V)
)
def _bartlett_sampling(self, sample_shape=torch.Size()):
p = self._event_shape[-1] # has singleton shape
# Implemented Sampling using Bartlett decomposition
noise = _clamp_above_eps(
self._dist_chi2.rsample(sample_shape).sqrt()
).diag_embed(dim1=-2, dim2=-1)
i, j = torch.tril_indices(p, p, offset=-1)
noise[..., i, j] = torch.randn(
torch.Size(sample_shape) + self._batch_shape + (int(p * (p - 1) / 2),),
dtype=noise.dtype,
device=noise.device,
)
chol = self._unbroadcasted_scale_tril @ noise
return chol @ chol.transpose(-2, -1)
[docs] def rsample(
self, sample_shape: _size = torch.Size(), max_try_correction=None
) -> torch.Tensor:
r"""
.. warning::
In some cases, sampling algorithm based on Bartlett decomposition may return singular matrix samples.
Several tries to correct singular samples are performed by default, but it may end up returning
singular matrix samples. Singular samples may return `-inf` values in `.log_prob()`.
In those cases, the user should validate the samples and either fix the value of `df`
or adjust `max_try_correction` value for argument in `.rsample` accordingly.
"""
if max_try_correction is None:
max_try_correction = 3 if torch._C._get_tracing_state() else 10
sample_shape = torch.Size(sample_shape)
sample = self._bartlett_sampling(sample_shape)
# Below part is to improve numerical stability temporally and should be removed in the future
is_singular = self.support.check(sample)
if self._batch_shape:
is_singular = is_singular.amax(self._batch_dims)
if torch._C._get_tracing_state():
# Less optimized version for JIT
for _ in range(max_try_correction):
sample_new = self._bartlett_sampling(sample_shape)
sample = torch.where(is_singular, sample_new, sample)
is_singular = ~self.support.check(sample)
if self._batch_shape:
is_singular = is_singular.amax(self._batch_dims)
else:
# More optimized version with data-dependent control flow.
if is_singular.any():
warnings.warn("Singular sample detected.")
for _ in range(max_try_correction):
sample_new = self._bartlett_sampling(is_singular[is_singular].shape)
sample[is_singular] = sample_new
is_singular_new = ~self.support.check(sample_new)
if self._batch_shape:
is_singular_new = is_singular_new.amax(self._batch_dims)
is_singular[is_singular.clone()] = is_singular_new
if not is_singular.any():
break
return sample
[docs] def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
nu = self.df # has shape (batch_shape)
p = self._event_shape[-1] # has singleton shape
return (
-nu
* (
p * _log_2 / 2
+ self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1)
.log()
.sum(-1)
)
- torch.mvlgamma(nu / 2, p=p)
+ (nu - p - 1) / 2 * torch.linalg.slogdet(value).logabsdet
- torch.cholesky_solve(value, self._unbroadcasted_scale_tril)
.diagonal(dim1=-2, dim2=-1)
.sum(dim=-1)
/ 2
)
[docs] def entropy(self):
nu = self.df # has shape (batch_shape)
p = self._event_shape[-1] # has singleton shape
return (
(p + 1)
* (
p * _log_2 / 2
+ self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1)
.log()
.sum(-1)
)
+ torch.mvlgamma(nu / 2, p=p)
- (nu - p - 1) / 2 * _mvdigamma(nu / 2, p=p)
+ nu * p / 2
)
@property
def _natural_params(self):
nu = self.df # has shape (batch_shape)
p = self._event_shape[-1] # has singleton shape
return -self.precision_matrix / 2, (nu - p - 1) / 2
def _log_normalizer(self, x, y):
p = self._event_shape[-1]
return (y + (p + 1) / 2) * (
-torch.linalg.slogdet(-2 * x).logabsdet + _log_2 * p
) + torch.mvlgamma(y + (p + 1) / 2, p=p)