Shortcuts

Source code for torch.distributed.tensor.experimental

# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
from contextlib import contextmanager

from torch.distributed.tensor._api import DTensor
from torch.distributed.tensor.experimental._attention import context_parallel
from torch.distributed.tensor.experimental._func_map import local_map
from torch.distributed.tensor.experimental._register_sharding import register_sharding


__all__ = ["context_parallel", "implicit_replication", "local_map", "register_sharding"]


@contextmanager
def implicit_replication():
    """
    This context manager allows :class:`DTensor` to implicitly treat all non-DTensors (``torch.Tensor``)
    in the program be replicate :class:`DTensor` s during the operator computation.

    .. warning:: This might possible lead to incorrect results if ``torch.Tensor`` s are not replicated
        in practice, please use it at your discretion.
    """
    try:
        DTensor._op_dispatcher._allow_implicit_replication = True
        yield
    finally:
        DTensor._op_dispatcher._allow_implicit_replication = False


# Set namespace for exposed private names
context_parallel.__module__ = "torch.distributed.tensor.experimental"
implicit_replication.__module__ = "torch.distributed.tensor.experimental"
local_map.__module__ = "torch.distributed.tensor.experimental"
register_sharding.__module__ = "torch.distributed.tensor.experimental"

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources