Source code for torch.distributed.optim.post_localSGD_optimizer
# mypy: allow-untyped-defs
import warnings
import torch
import torch.distributed.algorithms.model_averaging.averagers as averagers
[docs]class PostLocalSGDOptimizer(torch.optim.Optimizer):
r"""
Wraps an arbitrary :class:`torch.optim.Optimizer` and runs `post-local SGD <https://arxiv.org/abs/1808.07217>`_,
This optimizer runs local optimizer at every step.
After the warm-up stage, it averages parameters periodically afer the local optimizer is applied.
Args:
optim: The local optimizer.
averager: A model averager instance to run post-localSGD algorithm.
Example::
>>> # xdoctest: +SKIP("undefined variables")
>>> import torch
>>> import torch.distributed as dist
>>> import torch.distributed.algorithms.model_averaging.averagers as averagers
>>> import torch.nn as nn
>>> from torch.distributed.optim import PostLocalSGDOptimizer
>>> from torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook import (
>>> PostLocalSGDState,
>>> post_localSGD_hook,
>>> )
>>>
>>> model = nn.parallel.DistributedDataParallel(
>>> module, device_ids=[rank], output_device=rank
>>> )
>>>
>>> # Register a post-localSGD communication hook.
>>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100)
>>> model.register_comm_hook(state, post_localSGD_hook)
>>>
>>> # Create a post-localSGD optimizer that wraps a local optimizer.
>>> # Note that ``warmup_steps`` used in ``PostLocalSGDOptimizer`` must be the same as
>>> # ``start_localSGD_iter`` used in ``PostLocalSGDState``.
>>> local_optim = torch.optim.SGD(params=model.parameters(), lr=0.01)
>>> opt = PostLocalSGDOptimizer(
>>> optim=local_optim,
>>> averager=averagers.PeriodicModelAverager(period=4, warmup_steps=100)
>>> )
>>>
>>> # In the first 100 steps, DDP runs global gradient averaging at every step.
>>> # After 100 steps, DDP runs gradient averaging within each subgroup (intra-node by default),
>>> # and post-localSGD optimizer runs global model averaging every 4 steps after applying the local optimizer.
>>> for step in range(0, 200):
>>> opt.zero_grad()
>>> loss = loss_fn(output, labels)
>>> loss.backward()
>>> opt.step()
"""
def __init__(self, optim: torch.optim.Optimizer, averager: averagers.ModelAverager):
self.optim = optim
self.param_groups = self.optim.param_groups
self.averager = averager
@property
def state(self):
return self.optim.state
def __repr__(self):
return self.optim.__repr__()
[docs] def state_dict(self):
r"""
This is the same as :class:`torch.optim.Optimizer` :meth:`state_dict`,
but adds an extra entry to record model averager's step to the checkpoint
to ensure reload does not cause unnecessary warm up again.
"""
optim_state_dict = self.optim.state_dict()
optim_state_dict["step"] = self.averager.step
return optim_state_dict
[docs] def load_state_dict(self, state_dict):
r"""
This is the same as :class:`torch.optim.Optimizer` :meth:`load_state_dict`,
but also restores model averager's step value to the one
saved in the provided ``state_dict``.
If there is no ``"step"`` entry in ``state_dict``,
it will raise a warning and initialize the model averager's step to 0.
"""
self.optim.load_state_dict(state_dict)
if "step" in state_dict:
self.averager.step = state_dict["step"]
else:
warnings.warn(
"Loaded state dict does not contain a step counter for an averager. "
"Setting step counter to 0."
)
self.averager.step = 0
[docs] def step(self): # type: ignore[override]
r"""
Performs a single optimization step (parameter update).
"""
self.optim.step()
self.averager.average_parameters(params=self.param_groups)
def zero_grad(self, set_to_none: bool = True): # type: ignore[override]
self.optim.zero_grad(set_to_none=set_to_none)
def add_param_group(self, param_group):
self.optim.add_param_group(param_group)