Shortcuts

Source code for torch.distributed.device_mesh

# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import math
import threading
from functools import reduce
from itertools import chain
from typing import Optional, TYPE_CHECKING, Union

import torch
from torch.distributed import is_available
from torch.utils._typing_utils import not_none


__all__ = ["init_device_mesh", "DeviceMesh"]


if not is_available():
    import sys

    # We need to create the stubs when distributed is not available.
    # Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```),
    # since it would try to import ``torch.distributed.device_mesh`` or
    # ``torch.distributed.init_device_mesh`` but cannot find them.

    class _DeviceMeshStub:
        pass

    def _init_device_mesh_stub():
        pass

    sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub  # type: ignore[attr-defined]
    sys.modules[
        "torch.distributed.device_mesh"
    ].init_device_mesh = _init_device_mesh_stub  # type: ignore[attr-defined]


else:
    from torch._C._distributed_c10d import Backend as C10dBackend
    from torch.distributed.distributed_c10d import (
        _find_pg_by_ranks_and_tag,
        _get_default_group,
        _get_group_tag,
        get_backend,
        get_process_group_ranks,
        get_rank,
        get_world_size,
        init_process_group,
        is_initialized,
        new_group,
        ProcessGroup,
        split_group,
    )

    logger = logging.getLogger(__name__)

    # only import numpy typing when type checking
    if TYPE_CHECKING:
        try:
            from numpy.typing import ArrayLike
        except ImportError:
            logger.warning(
                "DeviceMesh requires numpy >= 1.21 to be installed for type checking"
            )

    class _MeshEnv(threading.local):
        def __init__(self) -> None:
            self.mesh_stack: list[DeviceMesh] = []
            self.child_to_root_mapping: dict[DeviceMesh, DeviceMesh] = {}
            self.mesh_dim_group_options: dict[
                int, tuple[str, Optional[C10dBackend.Options]]
            ] = {}
            self.root_to_flatten_mapping: dict[DeviceMesh, dict[str, DeviceMesh]] = {}
            # Record flatten mesh name to its mesh dim index in root mesh.
            self.flatten_name_to_root_dims: dict[
                DeviceMesh, dict[str, tuple[int, ...]]
            ] = {}

        def get_current_mesh(self) -> "DeviceMesh":
            if len(self.mesh_stack) == 0:
                raise RuntimeError("No device mesh is currently active!")
            return self.mesh_stack[-1]

        def create_sub_mesh(
            self,
            device_mesh: "DeviceMesh",
            submesh_dim_names: tuple[str, ...],
            submesh_dims: list[tuple[int, ...]],
        ) -> "DeviceMesh":
            # Get the submesh dim size from the submesh_dims.
            # For example, if we have a 3D mesh with mesh_shape (2, 2, 2) mesh_dim_names ("dp", "cp", "tp") and we want
            # to slice out mesh["dp_cp"], then submesh_dims = [(0, 1), (2,)] and submesh_dim_size = [2 * 2, 2] = [4, 2].
            # If we want to slice out mesh["dp", "cp"], then submesh_dims = [(0,), (1,)] and submesh_dim_size = [2, 2].
            slice_dim_size = [
                reduce(
                    lambda x, y: x * device_mesh.mesh.size(y),
                    mesh_dim,
                    1,
                )
                for mesh_dim in submesh_dims
            ]

            mesh_tensor = device_mesh.mesh
            # slice_dim_idx could be differnt from submesh_dims, as we may need to flatten out some dims.
            slice_dim_idx = []
            slice_dim_group_info = []
            # keep track of the number of dims that have been flattened so we can get the correct slice_dim_idx in the
            # flattened mesh tensor.
            num_dims_flatten = 0
            for mesh_dim_indices, mesh_dim_name in zip(submesh_dims, submesh_dim_names):
                # Currently, this only allows slicing out a contiguous flattened dim.
                # TODO: we need to handle reconstructing a non-contiguous flattened dim.
                if len(mesh_dim_indices) > 1:
                    # We need to move the start_dim and end_dim to the left if some dims are already flattened.
                    mesh_tensor = mesh_tensor.flatten(
                        start_dim=mesh_dim_indices[0] - num_dims_flatten,
                        end_dim=mesh_dim_indices[-1] - num_dims_flatten,
                    )
                    # If some dims are already flattened, we need to adjust the slice_dim_idx accordingly.
                    # For example, if the submesh_dims = [(0, 1), (2,), (3, 4)] with 0-1 flattened and 3-4 flattened,
                    # then the final slice_dim_idx should be [0, 1, 2].
                    slice_dim_idx.append(mesh_dim_indices[0] - num_dims_flatten)
                    num_dims_flatten += len(mesh_dim_indices) - 1
                    slice_dim_group_info.append(
                        self.root_to_flatten_mapping[device_mesh][
                            mesh_dim_name
                        ]._dim_group_infos[0]
                    )
                else:
                    slice_dim_idx.append(mesh_dim_indices[0] - num_dims_flatten)
                    slice_dim_group_info.append(
                        device_mesh._dim_group_infos[mesh_dim_indices[0]]
                    )

            # mesh_tensor has already been flattened if needed. So mesh_tensor.ndim <= device_mesh.mesh.ndim now.
            mesh_dims_remained_idx = list(range(mesh_tensor.ndim))
            for idx in slice_dim_idx:
                mesh_dims_remained_idx.remove(idx)

            # pg_ranks_by_dim is the size of [number of local ranks of the outermost submesh dimension, *slice_dim_idx]
            # This means on each local rank of the outermost slice mesh dim, we have a tensor of submesh size with
            # the pg ranks of the submesh. From this, we can extract the submesh mesh tensor contains the current rank.
            pg_ranks_by_dim = mesh_tensor.permute(
                *mesh_dims_remained_idx, *slice_dim_idx
            ).reshape(-1, *slice_dim_size)

            cur_rank = device_mesh.get_rank()
            for mesh_nd in pg_ranks_by_dim:
                submesh = DeviceMesh(
                    device_mesh.device_type,
                    mesh_nd,
                    mesh_dim_names=submesh_dim_names,
                    _init_backend=False,
                )
                if cur_rank in mesh_nd:
                    res_submesh = submesh

            res_submesh._dim_group_infos = slice_dim_group_info  # type: ignore[possibly-undefined]
            self.child_to_root_mapping[res_submesh] = device_mesh

            return res_submesh

        def create_flatten_mesh(
            self, device_mesh: "DeviceMesh", mesh_dim_name: Optional[str] = None
        ) -> "DeviceMesh":
            root_mesh = _mesh_resources.get_root_mesh(device_mesh)

            flatten_dims_in_root = [
                not_none(root_mesh.mesh_dim_names).index(flattened_mesh_dim_name)
                for flattened_mesh_dim_name in not_none(device_mesh.mesh_dim_names)
            ]

            if not mesh_dim_name:
                mesh_dim_name = "_".join(
                    [
                        not_none(root_mesh.mesh_dim_names)[dim]
                        for dim in flatten_dims_in_root
                    ]
                )

            # Check whether the mesh_dim_name for flattened mesh is valid.
            self.flatten_name_to_root_dims.setdefault(root_mesh, {})
            invalid_dim_names = chain(
                *list(not_none(root_mesh.mesh_dim_names)),
                *self.flatten_name_to_root_dims[root_mesh].keys(),
            )
            if mesh_dim_name in invalid_dim_names:
                raise RuntimeError(
                    f"{mesh_dim_name} already exists for submesh of the {root_mesh}. ",
                    f"The mesh_dim_names of submesh and flattened mesh are {invalid_dim_names}. "
                    f"Please specify another valid mesh_dim_name.",
                )

            # Quick return if the flatten mesh has been created before.
            # TODO: If we decide to restrict flatten initialization once, we should remove
            # this check and throw an error if the flatten mesh is already created before.
            if (
                root_mesh in self.root_to_flatten_mapping
                and mesh_dim_name in self.root_to_flatten_mapping[root_mesh]
            ):
                return self.root_to_flatten_mapping[root_mesh][mesh_dim_name]

            flattened_mesh_dim_size = math.prod(device_mesh.mesh.size())

            remained_dims_in_root = list(range(root_mesh.mesh.ndim))
            for flatten_dim_in_root in flatten_dims_in_root:
                remained_dims_in_root.remove(flatten_dim_in_root)

            pg_ranks_by_dim = root_mesh.mesh.permute(
                *remained_dims_in_root, *flatten_dims_in_root
            ).reshape(-1, flattened_mesh_dim_size)

            cur_rank = root_mesh.get_rank()
            for mesh_nd in pg_ranks_by_dim:
                # need to init backend here since the flattened pg doesn't exist in root mesh.
                flattened_mesh = DeviceMesh(
                    root_mesh.device_type,
                    mesh_nd,
                    mesh_dim_names=(mesh_dim_name,),
                )
                if cur_rank in mesh_nd:
                    res_flattened_mesh = flattened_mesh
            self.child_to_root_mapping[res_flattened_mesh] = root_mesh  # type: ignore[possibly-undefined]
            self.root_to_flatten_mapping.setdefault(root_mesh, {})[mesh_dim_name] = (
                res_flattened_mesh  # type: ignore[possibly-undefined]
            )
            self.flatten_name_to_root_dims[root_mesh][mesh_dim_name] = tuple(
                flatten_dims_in_root
            )  # type: ignore[possibly-undefined]

            return res_flattened_mesh

        def get_root_mesh(self, device_mesh: "DeviceMesh") -> "DeviceMesh":
            # If a mesh could not be found in the child_to_root_mapping, it is a root mesh itself.
            # A root mesh is not created through slicing.
            # We considers the root mesh of a root mesh is itself.
            root_mesh = self.child_to_root_mapping.get(device_mesh, None)
            return device_mesh if not root_mesh else root_mesh

        def get_root_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]:
            """
            Returns the index of the mesh dim in the root mesh.
            The device_mesh passed in needs to be sliced out from the root mesh
            or submesh of the root mesh.
            """
            root_mesh = self.get_root_mesh(device_mesh)
            child_mesh_dim_names = device_mesh.mesh_dim_names
            if root_mesh and child_mesh_dim_names:
                assert len(child_mesh_dim_names) == 1, (
                    "The submesh can only be a 1D mesh."
                )
                child_mesh_dim_name = child_mesh_dim_names[0]
                return self.get_mesh_dim_by_name(root_mesh, child_mesh_dim_name)
            return None

        @staticmethod
        def num_devices_per_host(device_type: str) -> int:
            return _get_device_handle(device_type).device_count()

        @staticmethod
        def num_hosts(device_type: str) -> int:
            # ProcessGroup can't tell us this info so we have to infer it, assume
            # homogeneous hardware for now
            return get_world_size() // _MeshEnv.num_devices_per_host(device_type)

        def get_mesh_dim_by_name(
            self, device_mesh: "DeviceMesh", mesh_dim_name: str
        ) -> int:
            if (
                device_mesh.mesh_dim_names is None
                or len(device_mesh.mesh_dim_names) == 0
            ):
                raise KeyError(
                    "No `mesh_dim_names` found.",
                )
            if mesh_dim_name not in device_mesh.mesh_dim_names:
                raise KeyError(
                    f"Mesh dimension '{mesh_dim_name}' does not exist.",
                    f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}",
                )
            return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))

        def _set_mesh_dim_group_options(
            self,
            dim: int,
            backend: str,
            pg_options: Optional[C10dBackend.Options] = None,
        ) -> None:
            self.mesh_dim_group_options[dim] = (backend, pg_options)

        def _get_slice_mesh_dims(
            self, device_mesh, mesh_dim_names
        ) -> list[tuple[int, ...]]:
            """
            Validate whether the mesh_dim_names is valid for slicing the given device_mesh.
            If valid, return dim indexes of the slice mesh in the device mesh.
            """
            if device_mesh != self.get_root_mesh(device_mesh):
                raise RuntimeError("Cannot create a submesh from a submesh.")

            # The slice mesh_dim_names should consist either the device_mesh's mesh_dim_names
            # or its flattened mesh's mesh_dim_names.
            self.flatten_name_to_root_dims.setdefault(device_mesh, {})
            flatten_name_to_root_dims = self.flatten_name_to_root_dims[device_mesh]
            valid_mesh_dim_names = [
                *device_mesh.mesh_dim_names,
                *flatten_name_to_root_dims,
            ]

            if not all(
                mesh_dim_name in valid_mesh_dim_names
                for mesh_dim_name in mesh_dim_names
            ):
                raise KeyError(
                    f"Invalid mesh_dim_names {mesh_dim_names} specified. "
                    f"Valid mesh_dim_names are {valid_mesh_dim_names}."
                )

            # Validate the order of the slice mesh dim indices.
            # This needs to be in ascending order.
            curr_idx = -1
            slice_mesh_dims = []
            for mesh_dim_name in mesh_dim_names:
                if mesh_dim_name in flatten_name_to_root_dims:
                    mesh_indices = flatten_name_to_root_dims[mesh_dim_name]
                    # TODO: this doesn't allow non-contiguous slicing with flatten dim yet. next_idx
                    # should be mesh_indices[0] once we support non-contiguous slicing with flatten dim.
                    next_idx = mesh_indices[-1]
                    slice_mesh_dims.append(mesh_indices)
                else:
                    next_idx = device_mesh.mesh_dim_names.index(mesh_dim_name)
                    slice_mesh_dims.append((next_idx,))
                if next_idx <= curr_idx:
                    raise KeyError(
                        f"Invalid mesh_dim_names {mesh_dim_names} specified. ",
                        f"Found mesh dim indices to slice: {slice_mesh_dims}. ",
                        "Mesh dim indices should be in ascending order.",
                    )
                curr_idx = next_idx

            return slice_mesh_dims

        def _get_all_submeshes(
            self, device_mesh: "DeviceMesh", mesh_dim_name: str
        ) -> list["DeviceMesh"]:
            """
            Return all the submeshes of a given mesh dimension of the device mesh.
            """
            mesh_dim = self.get_mesh_dim_by_name(device_mesh, mesh_dim_name)
            pg_ranks_by_dim = device_mesh.mesh.swapdims(-1, mesh_dim).reshape(
                -1, device_mesh.mesh.size(mesh_dim)
            )

            cur_rank = device_mesh.get_rank()
            res_submeshes = []
            for mesh_1d in pg_ranks_by_dim:
                submesh = DeviceMesh(
                    device_mesh.device_type,
                    mesh_1d,
                    mesh_dim_names=(mesh_dim_name,),
                    _init_backend=False,
                )
                submesh._dim_group_infos = (
                    [device_mesh._dim_group_infos[mesh_dim]]
                    if cur_rank in mesh_1d
                    else []
                )
                res_submeshes.append(submesh)

            return res_submeshes

    _mesh_resources: _MeshEnv = _MeshEnv()

    def _get_device_handle(device_type: str = "cuda"):
        """
        Get the module corresponding to the device_type which is cuda or cuda-like device.
        For example, when the device_type is cuda, the module `torch.cuda` is returned.
        Return None when there is no corresponding module for device_type, otherwise
        return the corresponding module.
        """
        return getattr(torch, device_type, None)

[docs] class DeviceMesh: """ DeviceMesh represents a mesh of devices, where layout of devices could be represented as a n-d dimension array, and each value of the n-d dimensional array is the global id of the default process group ranks. DeviceMesh could be used to describe the layout of devices across the cluster, and serves as a proxy for communication among the device lists within the cluster. DeviceMesh can be used as a context manager. .. note:: DeviceMesh follows SPMD programming model, which means the same PyTorch Python program is running on all processes/ranks in the cluster. Therefore, users need to make sure the `mesh` array (which describes the layout of devices) should be identical across all ranks. Inconsistent `mesh` will lead to silent hang. Args: device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout of devices, where the IDs are global IDs of the default process group. Returns: DeviceMesh: A :class:`DeviceMesh` object representing the device layout. The following program runs on each process/rank in an SPMD manner. In this example, we have 2 hosts with 4 GPUs each. A reduction over the first dimension of mesh will reduce across columns (0, 4), .. and (3, 7), a reduction over the second dimension of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7). Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) """ device_type: str mesh: torch.Tensor mesh_dim_names: Optional[tuple[str, ...]] def __init__( self, device_type: str, mesh: Union[torch.Tensor, "ArrayLike"], *, mesh_dim_names: Optional[tuple[str, ...]] = None, _init_backend: bool = True, ) -> None: self.device_type = device_type if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu": raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}") self.mesh = ( mesh.detach().to(dtype=torch.int) if isinstance(mesh, torch.Tensor) else torch.tensor(mesh, device="cpu", dtype=torch.int) ) self.mesh_dim_names = tuple(mesh_dim_names) if mesh_dim_names else None # private field to pre-generate DeviceMesh's hash self._flatten_mesh_list = tuple(self.mesh.flatten().tolist()) self._thread_id = None # Skip process group initialization if xla device or init backend is False # TODO(yeounoh) implement DeviceMesh backend and register XLA backend. if device_type != "xla": # always try to create default (world) pg, even if it is not initialized # already. The world pg is used for device mesh identity (rank) on each # process (we need to know if the current global rank is in the mesh or not). if _init_backend: self._get_or_create_default_group() self._init_process_groups() if is_initialized() and get_backend() == "threaded": self._thread_id = threading.get_ident() # calculate the coordinates of the current global rank on the mesh rank_coords = (self.mesh == get_rank()).nonzero() assert rank_coords.size(0) in (0, 1) self._coordinate_on_dim: Optional[list[int]] = ( rank_coords[0].tolist() if rank_coords.size(0) > 0 else None ) def _get_or_create_default_group(self): default_initialized = is_initialized() if not default_initialized: init_process_group() world_size = get_world_size() if self.mesh.numel() > world_size: raise RuntimeError( f"Mesh should not be bigger than default world size {world_size}, but found {self.mesh.numel()} ranks!" ) device_handle = _get_device_handle(self.device_type) # TODO: if user want to pass pg_options, offer a way to do it if not default_initialized and device_handle: # automatically set the current cuda/cuda-like device base on num of gpu devices available in each host # NOTE: This device selection would only work for homogeneous hardware. num_devices_per_host = device_handle.device_count() if ( world_size > num_devices_per_host and world_size % num_devices_per_host != 0 ): raise RuntimeError( f"DeviceMesh only support homogeneous hardware, but found " f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!" ) device_handle.set_device(get_rank() % num_devices_per_host) return _get_default_group() def _init_process_groups(self): # tag/ranks/group_name associated with each mesh dimension, each # mesh dimension should have one sub-group per rank # # TODO(yifu): remove tag and ranks once we fully migrate to native # functional collectives. See details in: # https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208 dim_group_infos: list[tuple[str, list[int], str]] = [] default_group = _get_default_group() if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size(): # Append the default pg to the first dim groups only if the default pg is compatible with `self.device_type`. # Otherwise, create new pg. ranks = list(range(get_world_size())) dim_group = ( new_group( backend="cpu:gloo,cuda:nccl", ranks=ranks, group_desc="mesh_default", ) if torch.cuda.is_available() and get_backend(default_group) == "gloo" else default_group ) dim_group_infos.append( ( _get_group_tag(dim_group), ranks, dim_group.group_name, ) ) else: # create sub pgs base on the mesh argument specified for dim in range(self.mesh.ndim): # swap the current dim to the last dim # then reshape to flatten out other dims pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape( -1, self.mesh.size(dim) ) # Respect dim group options specified via _MeshEnv.set_dim_group_options(). # Inherit from the parent group if no options are specified for the group. if dim in _mesh_resources.mesh_dim_group_options: ( backend, pg_options, ) = _mesh_resources.mesh_dim_group_options[dim] else: backend, pg_options = None, None # If we have a 2D mesh with mesh_dim_names ("dp", "tp"), the group description # of the subgroups would be `mesh_dim_dp` and `mesh_name_tp`. # If the mesh doesn't not have a mesh_dim_names, then the group description of the # subgroup would be `mesh_dim_0` and `mesh_dim_1`. group_desc = ( f"mesh_{self.mesh_dim_names[dim]}" if self.mesh_dim_names else f"mesh_dim_{dim}" ) # If bound_device_id exists, it means the nccl communicator has been eagerly initialized # so that we can use `split_group` to create subgroups through `ncclCommSplit`. # In this case, we only need to make one API call (`split_group``) for the subgroup creation # for each mesh dimension. In a 2 * 4 mesh, we only need to make 2 API calls per ranks to create # all the subgroups. # Otherwise, we need to make more than one API call (`new_group`) for subgroup creations. The # numbers of API calls are equal to the number of subgroups for each mesh dimension. In a 2 * 4 # mesh, we need to make 2 + 4 = 6 API calls per ranks to create all the subgroups. dim_group = None has_split_group = False if ( bound_device_id := getattr( default_group, "bound_device_id", None ) ) is not None and torch.cuda.is_available(): dim_group = split_group( parent_pg=default_group, pg_options=pg_options, split_ranks=pg_ranks_by_dim.tolist(), group_desc=group_desc, ) has_split_group = True # If the subgroup has been already created through `split_group`, we simply loop over `pg_ranks_by_dim` # and append the `(group_tag, subgroup_ranks, and group_name)` tuple to the `dim_group_infos` list when # the current rank is in the subgroup. # Otherwise, we use `new_group` instead of `split_group` to create subgroups by looping over `pg_ranks_by_dim` # along with appending information to the `dim_group_infos` list whenever necessary. for dim_mesh in pg_ranks_by_dim: subgroup_ranks = dim_mesh.tolist() # We temporarily revert the re-use subgroup, since it breaks two internal tests. # Temporarily reverting to resolve test timeout while root-causing. # TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists. if bound_device_id is None or not has_split_group: dim_group = new_group( ranks=subgroup_ranks, backend=backend, pg_options=pg_options, group_desc=group_desc, ) # only add to dim_groups if the current rank in the subgroup if self.get_rank() in subgroup_ranks: if len(dim_group_infos) > dim: raise RuntimeError( f"Each device mesh dimension should get only one process group, but got {self.get_rank()} " f"in {subgroup_ranks}!" ) dim_group_infos.append( ( _get_group_tag(not_none(dim_group)), subgroup_ranks, dim_group.group_name, ) ) self._dim_group_infos = dim_group_infos def __enter__(self) -> "DeviceMesh": # set this mesh as the current mesh in mesh env _mesh_resources.mesh_stack.append(self) return self # pyre-fixme[2]: Parameter must be annotated. def __exit__(self, exc_type, exc_value, exc_traceback) -> None: # pop this mesh from mesh env _mesh_resources.mesh_stack.pop() def __repr__(self) -> str: device_mesh_repr = ( f"DeviceMesh('{self.device_type}', {self.mesh.tolist()})" if not self.mesh_dim_names else f"DeviceMesh('{self.device_type}', {self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})" ) return device_mesh_repr def __hash__(self): # lazily compute hash self._hash = getattr(self, "_hash", None) if not self._hash: self._hash = hash( ( self._flatten_mesh_list, self.mesh.shape, self.device_type, self.mesh_dim_names, self._thread_id, ) ) return self._hash def __eq__(self, other: object) -> bool: if not isinstance(other, DeviceMesh): return False if id(self) == id(other): return True else: return ( self._flatten_mesh_list == other._flatten_mesh_list and self.mesh.shape == other.mesh.shape and self.device_type == other.device_type and self.mesh_dim_names == other.mesh_dim_names and self._thread_id == other._thread_id ) def __getitem__( self, mesh_dim_names: Union[str, tuple[str, ...]] ) -> "DeviceMesh": """ Slice the current DeviceMesh based on the mesh_dim_names given to create a submesh. The submesh created consists of the dimensions and the communicators indicated by ``mesh_dim_names`` Args: mesh_dim_names (Union[str, Tuple[str]]): the name or the tuple of names of the mesh dimension of the DeviceMesh to create the submesh for. Returns: A :class:`DeviceMesh` object The following program runs on each process/rank in an SPMD manner in a world size of 8. In the first example: Calling mesh_2d["tp"] on rank 0, 1, 2, 3 returns a 1D submesh of DeviceMesh:([0, 1, 2, 3]). Calling mesh_2d["tp"] on rank 4, 5, 6, 7 returns a 1D submesh of DeviceMesh:([4, 5, 6, 7]). Calling mesh_2d["dp"] on rank 0, 4 returns a 1D submesh of DeviceMesh:([0, 4]). Calling mesh_2d["dp"] on rank 1, 5 returns a 1D submesh of DeviceMesh:([1, 5]). Calling mesh_2d["dp"] on rank 2, 6 returns a 1D submesh of DeviceMesh:([2, 6]). Calling mesh_2d["dp"] on rank 3, 7 returns a 1D submesh of DeviceMesh:([3, 7]). In the second example: Calling mesh_3d["dp", "cp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 1], [4, 5]]). Calling mesh_3d["dp", "cp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 3], [6, 7]]). Calling mesh_3d["cp", "dp"] on rank 0, 1, 4, 5 returns a 2D submesh of DeviceMesh:([[0, 4], [1, 5]]). Calling mesh_3d["cp", "dp"] on rank 2, 3, 6, 7 returns a 2D submesh of DeviceMesh:([[2, 6], [3, 7]]). Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize a 2D device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh_2d = init_device_mesh(device_type="cuda", (2,4), mesh_dim_names=("dp", "tp")) >>> tp_mesh = mesh_2d["tp"] >>> dp_mesh = mesh_2d["dp"] >>> >>> # Initialize a 3D mesh. >>> mesh_3d = init_device_mesh(device_type="cuda", (2,2,2), mesh_dim_names=("dp", "pp", "cp")) >>> # The order of the mesh_dim_names provided deteremines the order of dimensions in the submesh. >>> dp_cp_mesh = mesh_3d["dp", "cp"] >>> cp_dp_mesh = mesh_3d["cp", "dp"] """ if not self.mesh_dim_names: raise RuntimeError("Cannot slice a DeviceMesh without mesh_dim_names!") mesh_dim_names = ( (mesh_dim_names,) if isinstance(mesh_dim_names, str) else mesh_dim_names ) if mesh_dim_names == self.mesh_dim_names: return self else: slice_mesh_dims = _mesh_resources._get_slice_mesh_dims( self, mesh_dim_names ) # When using FakeTensorMode to trace the model, `create_sub_mesh()` will # fail as it will require a real tensor to manipulate. # `unset_fake_temporarily()` will allow us to materialize the tensors # within `_mesh_resources`, which should not affect modling. # # Note that this should be orthogonal to torch.compile(). But whether # we can compile device_mesh `slicing` (no graph break) is not verified # yet and need a follow-up, # TODO: compiler + device_mesh slicing. with torch._subclasses.fake_tensor.unset_fake_temporarily(): submesh = _mesh_resources.create_sub_mesh( self, mesh_dim_names, slice_mesh_dims ) return submesh
[docs] def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> ProcessGroup: """ Returns the single ProcessGroup specified by mesh_dim, or, if mesh_dim is not specified and the DeviceMesh is 1-dimensional, returns the only ProcessGroup in the mesh. Args: mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index of the mesh dimension. Default is None. Returns: A :class:`ProcessGroup` object. """ if not hasattr(self, "_dim_group_infos"): raise RuntimeError("DeviceMesh process groups not initialized!") if self.mesh.ndim > 1 and mesh_dim is None: raise RuntimeError( f"Found the DeviceMesh have {self.mesh.ndim} dimensions", "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", "If you want to get the list of all the ProcessGroups in the DeviceMesh," "please use `get_all_groups()` instead.", ) # Quick return if the current device_mesh is a 1D mesh. if self.mesh.ndim == 1 and mesh_dim is None: return not_none( _find_pg_by_ranks_and_tag(*self._dim_group_infos[0][:2]) # type: ignore[index] ) root_mesh = _mesh_resources.get_root_mesh(self) root_to_flatten_mapping = _mesh_resources.root_to_flatten_mapping.get( root_mesh, None ) if root_to_flatten_mapping and mesh_dim in root_to_flatten_mapping.keys(): dim_group_infos = root_to_flatten_mapping[ mesh_dim # type: ignore[index] ]._dim_group_infos[0][:2] return not_none(_find_pg_by_ranks_and_tag(*dim_group_infos)) else: mesh_dim = ( _mesh_resources.get_mesh_dim_by_name(self, mesh_dim) if isinstance(mesh_dim, str) else mesh_dim ) return not_none( _find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2]) # type: ignore[index] )
[docs] def get_all_groups(self) -> list[ProcessGroup]: """ Returns a list of ProcessGroups for all mesh dimensions. Returns: A list of :class:`ProcessGroup` object. """ return [self.get_group(i) for i in range(self.mesh.ndim)]
[docs] @staticmethod def from_group( group: Union[ProcessGroup, list[ProcessGroup]], device_type: str, mesh: Optional[Union[torch.Tensor, "ArrayLike"]] = None, *, mesh_dim_names: Optional[tuple[str, ...]] = None, ) -> "DeviceMesh": """ Constructs a :class:`DeviceMesh` with ``device_type`` from an existing :class:`ProcessGroup` or a list of existing :class:`ProcessGroup`. The constructed device mesh has number of dimensions equal to the number of groups passed. For example, if a single process group is passed in, the resulted DeviceMesh is a 1D mesh. If a list of 2 process groups is passed in, the resulted DeviceMesh is a 2D mesh. If more than one group is passed, then the ``mesh`` and ``mesh_dim_names`` arguments are required. The order of the process groups passed in determines the topology of the mesh. For example, the first process group will be the 0th dimension of the DeviceMesh. The `mesh` tensor passed in must have the same number of dimensions as the number of process groups passed in, and the order of the dimensions in the `mesh` tensor must match the order in the process groups passed in. Args: group (ProcessGroup or list[ProcessGroup]): the existing ProcessGroup or a list of existing ProcessGroups. device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". Passing in a device type with a GPU index, such as "cuda:0", is not allowed. mesh (torch.Tensor or ArrayLike, optional): A multi-dimensional array or an integer tensor describing the layout of devices, where the IDs are global IDs of the default process group. Default is None. mesh_dim_names (tuple[str], optional): A tuple of mesh dimension names to assign to each dimension of the multi-dimensional array describing the layout of devices. Its length must match the length of `mesh_shape`. Each string in `mesh_dim_names` must be unique. Default is None. Returns: DeviceMesh: A :class:`DeviceMesh` object representing the device layout. """ # 1D scenario if isinstance(group, ProcessGroup): group_ranks = get_process_group_ranks(group) if ( isinstance(mesh, torch.Tensor) and mesh.tolist() != group_ranks ) or ( mesh is not None and not isinstance(mesh, torch.Tensor) and mesh != group_ranks ): raise ValueError( f"Invalid mesh {str(mesh)} for ProcessGroup with ranks {group_ranks}" ) mesh = torch.tensor(group_ranks, device="cpu", dtype=torch.int) device_mesh = DeviceMesh( device_type, mesh, mesh_dim_names=mesh_dim_names, _init_backend=False, ) device_mesh._dim_group_infos = [ (_get_group_tag(group), group_ranks, group.group_name) ] return device_mesh # nD scenario groups = list(group) if len(groups) == 0: raise ValueError("Expects at least one ProcessGroup to be passed") if mesh is None: raise ValueError("Must pass mesh if passing multiple ProcessGroups") if mesh_dim_names is None: raise ValueError( "Must pass mesh_dim_names if passing multiple ProcessGroups" ) mesh = ( mesh.detach().to(dtype=torch.int, device="cpu") if isinstance(mesh, torch.Tensor) else torch.tensor(mesh, device="cpu", dtype=torch.int) ) if mesh.ndim != len(groups): raise ValueError( "Expects mesh with ndim equal to number of ProcessGroups but got " f"mesh {mesh.tolist()} and {len(groups)} ProcessGroups" ) device_mesh = DeviceMesh( device_type, mesh, mesh_dim_names=mesh_dim_names, _init_backend=False ) device_mesh._dim_group_infos = [ ( _get_group_tag(group), get_process_group_ranks(group), group.group_name, ) for group in groups ] return device_mesh
def size(self, mesh_dim: Optional[int] = None) -> int: return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim) @property def ndim(self) -> int: return self.mesh.ndim @property def shape(self) -> tuple[int, ...]: return tuple(self.mesh.shape)
[docs] def get_rank(self) -> int: """ Returns the current global rank. """ return get_rank()
[docs] def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: """ Returns the local rank of the given mesh_dim of the DeviceMesh. Args: mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index of the mesh dimension. Default is None. Returns: An integer denotes the local rank. The following program runs on each process/rank in an SPMD manner. In this example, we have 2 hosts with 4 GPUs each. Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0. Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3. Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) """ if self.ndim > 1 and mesh_dim is None: raise RuntimeError( f"Found the DeviceMesh have {self.mesh.ndim} dimensions", "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", ) elif mesh_dim is None: mesh_dim = 0 mesh_dim_group = not_none(self.get_group(mesh_dim)) assert isinstance(mesh_dim_group, ProcessGroup), ( "We expect ProcessGroup before calling `get_rank`!" ) return not_none(get_rank(mesh_dim_group))
[docs] def get_coordinate(self) -> Optional[list[int]]: """ Return the relative indices of this rank relative to all dimensions of the mesh. If this rank is not part of the mesh, return None. """ return self._coordinate_on_dim if self._coordinate_on_dim else None
def _flatten(self, mesh_dim_name: Optional[str] = None) -> "DeviceMesh": """ Returns a 1D DeviceMesh by flattening the current DeviceMesh. If no mesh_dim_name is provided, the default is a string concatentaing the mesh_dim_names of the given submesh with each mesh_dim_name separated by "_". For example, if we have a 3D mesh DeviceMesh([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], mesh_dim_names=("dp", "cp", "tp")), calling mesh_3d["dp", "cp"]._flatten() will create a 1D submesh DeviceMesh([0, 1, 2, 3], mesh_dim_names=("dp_cp",)) on rank 0, 1, 2, 3 and a 1D submesh DeviceMesh([4, 5, 6, 7], mesh_dim_names=("dp_cp",)) on rank 4, 5, 6, 7. After the flattened dimension is created, to access the flattened dimesnion in mesh_3d, one can use the existing slicing method to obtain the flattened mesh through calling mesh_3d["dp_cp"]. """ if not self.mesh_dim_names: raise RuntimeError( "Cannot flatten a DeviceMesh without mesh_dim_names!" ) return _mesh_resources.create_flatten_mesh(self, mesh_dim_name)
[docs] def init_device_mesh( device_type: str, mesh_shape: tuple[int, ...], *, mesh_dim_names: Optional[tuple[str, ...]] = None, ) -> DeviceMesh: """ Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters. This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`. If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`. .. note:: `init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging. .. note:: If no process group is found, init_device_mesh will initialize distributed process group/groups required for distributed communications behind the scene. Args: device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". Passing in a device type with a GPU index, such as "cuda:0", is not allowed. mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array describing the layout of devices. mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension of the multi-dimensional array describing the layout of devices. Its length must match the length of `mesh_shape`. Each string in `mesh_dim_names` must be unique. Returns: DeviceMesh: A :class:`DeviceMesh` object representing the device layout. Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import init_device_mesh >>> >>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,)) >>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp")) """ if mesh_dim_names is not None: if len(set(mesh_dim_names)) != len(mesh_dim_names): raise RuntimeError( "Each mesh_dim_name must be unique.", f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}", ) if len(mesh_shape) != len(mesh_dim_names): raise RuntimeError( "mesh_shape and mesh_dim_names should have same length!", f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.", ) # assume valid device types are all letters if device_type and not device_type.isalpha(): raise RuntimeError( f"Device type with index is not supported but got {device_type}. ", "If you maintained a 'torch.device' object, it's recommended to pass in 'device.type'.", ) # Always initialize the mesh's tensor on CPU, regardless of what the # external device type has been set to be (e.g. meta) with torch.device("cpu"): mesh = torch.arange(math.prod(mesh_shape), dtype=torch.int).view(mesh_shape) device_mesh = DeviceMesh( device_type=device_type, mesh=mesh, mesh_dim_names=mesh_dim_names, ) return device_mesh

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources