Source code for torch.ao.ns._numeric_suite_fx
# mypy: allow-untyped-defs
"""
This module contains tooling to compare weights and activations
across models. Example usage::
import copy
import torch
import torch.ao.quantization.quantize_fx as quantize_fx
import torch.ao.ns._numeric_suite_fx as ns
m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)).eval()
mp = quantize_fx.prepare_fx(m, {'': torch.ao.quantization.default_qconfig})
# We convert a copy because we need the original prepared model
# to be available for comparisons, and `quantize_fx.convert_fx` is inplace.
mq = quantize_fx.convert_fx(copy.deepcopy(mp))
#
# Comparing weights
#
# extract weight pairs
weight_comparison = ns.extract_weights('a', mp, 'b', mq)
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
weight_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# weight_comparison contains the weights from `mp` and `mq` stored
# in pairs, and can be used for further analysis.
#
# Comparing activations, with error propagation
#
# add loggers
mp_ns, mq_ns = ns.add_loggers(
'a', copy.deepcopy(mp),
'b', copy.deepcopy(mq),
ns.OutputLogger)
# send an example datum to capture intermediate activations
datum = torch.randn(1, 1, 1, 1)
mp_ns(datum)
mq_ns(datum)
# extract intermediate activations
act_comparison = ns.extract_logger_info(
mp_ns, mq_ns, ns.OutputLogger, 'b')
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# act_comparison contains the activations from `mp_ns` and `mq_ns` stored
# in pairs, and can be used for further analysis.
#
# Comparing activations, without error propagation
#
# create shadow model
mp_shadows_mq = ns.add_shadow_loggers(
'a', copy.deepcopy(mp),
'b', copy.deepcopy(mq),
ns.OutputLogger)
# send an example datum to capture intermediate activations
datum = torch.randn(1, 1, 1, 1)
mp_shadows_mq(datum)
# extract intermediate activations
shadow_act_comparison = ns.extract_shadow_logger_info(
mp_shadows_mq, ns.OutputLogger, 'b')
# add SQNR for each comparison, inplace
ns.extend_logger_results_with_comparison(
shadow_act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
'sqnr')
# shadow_act_comparison contains the activations from `mp_ns` and `mq_ns` stored
# in pairs, and can be used for further analysis.
"""
import collections
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, TYPE_CHECKING
import torch
import torch.ao.quantization.quantize_fx as quantize_fx
import torch.nn as nn
from torch.ao.ns.fx.graph_matcher import (
get_matching_subgraph_pairs,
get_type_a_related_to_b,
)
from torch.ao.ns.fx.mappings import get_base_name_to_sets_of_related_ops
from torch.ao.ns.fx.n_shadows_utils import (
_get_dedup_subgraphs,
create_add_loggers_graph,
create_n_transformed_and_logged_copies_of_subgraph,
create_results_comparison,
extract_weight_comparison,
group_results_by_subgraph,
OutputProp,
print_n_shadows_summary,
SHADOW_WRAPPER_NODE_NAME_PREFIX,
)
from torch.ao.ns.fx.qconfig_multi_mapping import QConfigMultiMapping
from torch.ao.quantization import QConfigMapping
from torch.ao.quantization.backend_config import BackendConfig
from torch.ao.quantization.backend_config.utils import (
get_fusion_pattern_to_root_node_getter,
)
from torch.ao.quantization.fx.graph_module import _get_observed_graph_module_attr
from torch.ao.quantization.fx.match_utils import _find_matches
from torch.ao.quantization.fx.qconfig_mapping_utils import (
_generate_node_name_to_qconfig,
)
from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
from torch.fx import GraphModule
from torch.fx.graph import Node
from .fx.graph_passes import add_loggers_to_model, create_a_shadows_b
from .fx.ns_types import NSNodeTargetType, NSResultsType, NSSingleResultValuesType
from .fx.utils import (
get_target_type_str,
maybe_add_missing_fqns,
rekey_logger_info_on_node_name_of_model,
)
from .fx.weight_utils import extract_weight_from_node
if TYPE_CHECKING:
from torch.ao.quantization.qconfig import QConfigAny
RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
[docs]class OutputLogger(nn.Module):
"""
Base class for capturing intermediate values.
"""
stats: List[torch.Tensor]
stats_rnn: List[RNNReturnType]
# Mark as impure so that calls to it will not be removed during DCE.
_is_impure = True
def __init__(
self,
ref_node_name: str,
prev_node_name: str,
model_name: str,
ref_name: str,
prev_node_target_type: str,
ref_node_target_type: str,
results_type: str,
index_within_arg: int,
index_of_arg: int,
fqn: Optional[str],
qconfig_str: Optional[str] = "",
):
super().__init__()
self.stats: List[torch.Tensor] = []
self.stats_rnn: List[RNNReturnType] = []
# name of the node which was responsible for adding this logger
# Note:
# - if we are logging node outputs, this is the same as prev_node_name
# - if we are logging node inputs, this is the name of the node
# whose input this logger is logging.
#
# example, where logger1 is logging input of op1 and logger2 is logging
# the output of op1:
#
# x1 -> logger1 -> op1 -> logger2 -> x2
#
# in this example,
# - logger1's prev_node_name is x1 and ref_node_name is op1
# - logger2's prev_node_name is op1 and ref_node_name is op1
self.ref_node_name = ref_node_name
# name of the node whose output this Logger is capturing
self.prev_node_name = prev_node_name
# name of the model from which the node originated from
self.model_name = model_name
# reference name, used to match loggers from separate models
# to each other
self.ref_name = ref_name
# type of the target of the node whose output this logger is logging
self.prev_node_target_type = prev_node_target_type
# type of the target of the node which was responsible for adding this
# logger
self.ref_node_target_type = ref_node_target_type
# what kind of values are inside of stats
self.results_type = results_type
# index of this node within the arg of the input/output node
# for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
self.index_within_arg = index_within_arg
# index of this node within the args of the input/output node
# for example, in add(x1, x2), x2 would have index_of_arg == 1
self.index_of_arg = index_of_arg
# fully qualified name
self.fqn = fqn
# if loggers are added before prepare_fx, but we do not want
# collect results of calibration, only results after convert_fx
# so, we add a flag to control whether this logger collects data
self.enabled = True
# string representation of qconfig
self.qconfig_str = qconfig_str
# this can be turned off to reduce memory usage during calibration
self.save_activations = True
# Note: cannot annotate the type of x because TorchScript does not support
# the Union type.
[docs] def forward(self, x):
# fmt: off
"""
""" # blank docblock to make autodoc happy
# fmt: on
# TODO(future PR): consider designing this better, as the difference
# between these two flags is subtle and not obvious.
if not self.enabled:
return x
if not self.save_activations:
return x
# TODO(future PR): consider refactoring this to better reuse the parent
# class
if isinstance(x, torch.Tensor):
self.stats.append(x.detach())
elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2:
new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach()))
self.stats_rnn.append(new_res)
return x
def __repr__(self):
clean_dict = {
k: v
for k, v in self.__dict__.items()
# skip nn.Module keys
if (k != "training") and not k.startswith("_")
}
return f"OutputLogger({clean_dict})"
[docs]class OutputComparisonLogger(OutputLogger):
"""
Same as OutputLogger, but also requires the original activation
in order to calculate the comparison at calibration time
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO(future PR): make the comparison function configurable
self.comparison_fn = torch.ao.ns.fx.utils.compute_sqnr
self.comparison_fn_name = "sqnr"
# precalculated comparisons of logger output versus reference
self.comparisons = []
# precalculated comparisons function
[docs] def forward(self, x, x_ref): # type: ignore[override]
# fmt: off
"""
""" # blank docblock to make autodoc happy
# fmt: on
if not self.enabled:
return x
assert isinstance(x, torch.Tensor), "non-tensor inputs not yet supported"
if self.save_activations:
# save the activation, for debugging
self.stats.append(x.detach())
# save the comparison
self.comparisons.append(self.comparison_fn(x, x_ref))
return x
def __repr__(self):
clean_dict = {
k: v
for k, v in self.__dict__.items()
# skip nn.Module keys
if (k != "training") and not k.startswith("_")
}
return f"OutputComparisonLogger({clean_dict})"
[docs]class NSTracer(quantize_fx.QuantizationTracer):
"""
Just like a regular FX quantization tracer, but treats observers and fake_quantize
modules as leaf modules.
"""
[docs] def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
# fmt: off
"""
""" # blank docblock to make autodoc happy
# fmt: on
if isinstance(m, torch.ao.quantization.ObserverBase):
return True
elif isinstance(m, torch.ao.quantization.FakeQuantizeBase):
return True
return super().is_leaf_module(m, module_qualified_name)
def _extract_weights_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument: List[Tuple[Node, str]],
results: NSResultsType,
op_to_type_to_weight_extraction_fn: Optional[
Dict[str, Dict[Callable, Callable]]
] = None,
) -> None:
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx._extract_weights_one_model"
)
for node, ref_name in nodes_and_names_to_instrument:
res_type = NSSingleResultValuesType.WEIGHT.value
extracted_weight = extract_weight_from_node(
node, model, op_to_type_to_weight_extraction_fn
)
if extracted_weight:
if ref_name not in results:
results[ref_name] = {res_type: {}}
results[ref_name][res_type][model_name] = [extracted_weight]
def _extract_weights_impl(
model_name_a: str,
gm_a: GraphModule,
model_name_b: str,
gm_b: GraphModule,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
op_to_type_to_weight_extraction_fn: Optional[
Dict[str, Dict[Callable, Callable]]
] = None,
) -> NSResultsType:
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx._extract_weights_impl"
)
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map
)
# split the subgraph pairs into one data structure for each model
nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = []
nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = []
for match_name, match in matched_subgraph_pairs.items():
subgraph_a, subgraph_b = match
nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name))
nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name))
# populate the results, one model at a time
results: NSResultsType = {}
_extract_weights_one_model(
model_name_a,
gm_a,
nodes_and_names_to_instrument_a,
results,
op_to_type_to_weight_extraction_fn,
)
_extract_weights_one_model(
model_name_b,
gm_b,
nodes_and_names_to_instrument_b,
results,
op_to_type_to_weight_extraction_fn,
)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on names of nodes in gm_b
results = rekey_logger_info_on_node_name_of_model(results, model_name_b)
return results
[docs]def extract_weights(
model_name_a: str,
model_a: nn.Module,
model_name_b: str,
model_b: nn.Module,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
op_to_type_to_weight_extraction_fn: Optional[
Dict[str, Dict[Callable, Callable]]
] = None,
) -> NSResultsType:
"""
Extract weights from model A and model B, and return a comparison.
Args:
model_name_a: string name of model A to use in results
model_a: model A
model_name_b: string name of model B to use in results
model_b: model B
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
op_to_type_to_weight_extraction_fn: optional override of function which extracts weight
from a type, subject to change
Return:
NSResultsType, containing the weight comparisons
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_weights")
if base_name_to_sets_of_related_ops is None:
base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
type_a_related_to_b = get_type_a_related_to_b(base_name_to_sets_of_related_ops)
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(
model_a, "node_name_to_scope"
)
if maybe_model_a_node_name_to_scope is not None:
gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(
model_b, "node_name_to_scope"
)
if maybe_model_b_node_name_to_scope is not None:
gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
return _extract_weights_impl(
model_name_a,
gm_a,
model_name_b,
gm_b,
base_name_to_sets_of_related_ops,
unmatchable_types_map,
op_to_type_to_weight_extraction_fn,
)
def _add_loggers_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument_inputs: List[Tuple[Node, str, str]],
nodes_and_names_to_instrument_outputs: List[Tuple[Node, str, str]],
logger_cls: Callable,
) -> nn.Module:
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx._add_loggers_one_model"
)
# TODO(future PR): do not observe nodes we do not care
# about (both fp32, denylist, etc)
node_to_instrument_inputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
node_to_instrument_outputs_to_ref_name: Dict[Node, Tuple[str, str]] = {}
for node, ref_name, ref_node_type in nodes_and_names_to_instrument_inputs:
node_to_instrument_inputs_to_ref_name[node] = (ref_name, ref_node_type)
for node, ref_name, ref_node_type in nodes_and_names_to_instrument_outputs:
node_to_instrument_outputs_to_ref_name[node] = (ref_name, ref_node_type)
model = add_loggers_to_model(
model,
node_to_instrument_inputs_to_ref_name,
node_to_instrument_outputs_to_ref_name,
logger_cls,
model_name,
)
return model
def _add_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_impl")
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map
)
nodes_and_names_to_instrument_inputs_a = []
nodes_and_names_to_instrument_inputs_b = []
nodes_and_names_to_instrument_outputs_a = []
nodes_and_names_to_instrument_outputs_b = []
for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items():
ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a)
ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b)
# Note: for matching inputs we use start_node, such as observing
# the input of linear in linear-relu
if should_log_inputs:
nodes_and_names_to_instrument_inputs_a.append(
(subgraph_a.start_node, match_name, ref_node_type_a)
)
nodes_and_names_to_instrument_inputs_b.append(
(subgraph_b.start_node, match_name, ref_node_type_b)
)
# Note: for matching activations we always use end_node,
# such as observing the output of relu in linear-relu
nodes_and_names_to_instrument_outputs_a.append(
(subgraph_a.end_node, match_name, ref_node_type_a)
)
nodes_and_names_to_instrument_outputs_b.append(
(subgraph_b.end_node, match_name, ref_node_type_b)
)
new_model_a = _add_loggers_one_model(
name_a,
gm_a,
nodes_and_names_to_instrument_inputs_a,
nodes_and_names_to_instrument_outputs_a,
logger_cls,
)
new_model_b = _add_loggers_one_model(
name_b,
gm_b,
nodes_and_names_to_instrument_inputs_b,
nodes_and_names_to_instrument_outputs_b,
logger_cls,
)
return (new_model_a, new_model_b)
[docs]def add_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs: bool = False,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
"""
Instrument model A and model B with loggers.
Args:
name_a: string name of model A to use in results
model_a: model A
name_b: string name of model B to use in results
model_b: model B
logger_cls: class of Logger to use
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
Return:
Returns a tuple of (model_a_with_loggers, model_b_with_loggers). Modifies both models inplace.
"""
torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_loggers")
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(
model_a, "node_name_to_scope"
)
if maybe_model_a_node_name_to_scope is not None:
gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(
model_b, "node_name_to_scope"
)
if maybe_model_b_node_name_to_scope is not None:
gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
return _add_loggers_impl(
name_a,
gm_a,
name_b,
gm_b,
logger_cls,
should_log_inputs=should_log_inputs,
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
unmatchable_types_map=unmatchable_types_map,
)
def _extract_logger_info_one_model(
model: nn.Module,
results: NSResultsType,
logger_cls: Callable,
) -> None:
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx._extract_logger_info_one_model"
)
for gm_name, mod in model.named_modules():
# TODO(future PR): better check when scripted
is_logger = isinstance(mod, logger_cls) or ( # type: ignore[arg-type]
isinstance(mod, torch.jit.RecursiveScriptModule)
and mod.original_name == "OutputLogger"
)
if is_logger:
key = mod.ref_name
if key not in results:
results[key] = {}
assert (
mod.model_name not in results[key]
), f"{mod.model_name} is already present in results"
if mod.results_type not in results[key]:
results[key][mod.results_type] = {}
if mod.model_name not in results[key][mod.results_type]:
results[key][mod.results_type][mod.model_name] = []
stats_to_use = mod.stats
if len(mod.stats_rnn) > 0:
stats_to_use = mod.stats_rnn
data = {
"type": mod.results_type,
"values": stats_to_use,
"ref_node_name": mod.ref_node_name,
"ref_node_target_type": mod.ref_node_target_type,
"prev_node_name": mod.prev_node_name,
"prev_node_target_type": mod.prev_node_target_type,
"index_within_arg": mod.index_within_arg,
"index_of_arg": mod.index_of_arg,
"fqn": mod.fqn,
"qconfig_str": mod.qconfig_str,
}
if hasattr(mod, "comparisons"):
data["comparisons"] = mod.comparisons
data["comparison_fn_name"] = mod.comparison_fn_name
else:
data["comparisons"] = []
data["comparison_fn_name"] = ""
results[key][mod.results_type][mod.model_name].append(data)
# ensure the list stays sorted
results[key][mod.results_type][mod.model_name].sort(
key=lambda res: f"{res['index_of_arg']}:{res['index_within_arg']}"
)
# TODO(future PR): align on naming
# this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
[docs]def extract_logger_info(
model_a: nn.Module,
model_b: nn.Module,
logger_cls: Callable,
model_name_to_use_for_layer_names: str,
) -> NSResultsType:
"""
Traverse all loggers in `model_a` and `model_b`, and extract the logged
information.
Args:
model_a: model A
model_b: model B
logger_cls: class of Logger to use
model_name_to_use_for_layer_names: string name of model to use for
layer names in the output
Return:
NSResultsType, containing the logged comparisons
"""
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx.extract_logger_info"
)
results: NSResultsType = {}
for model in (model_a, model_b):
_extract_logger_info_one_model(model, results, logger_cls)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on the name of model b
results = rekey_logger_info_on_node_name_of_model(
results, model_name_to_use_for_layer_names
)
return results
def _add_shadow_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> nn.Module:
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx._add_shadow_loggers_impl"
)
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map
)
gm_a_shadows_b = create_a_shadows_b(
name_a,
gm_a,
name_b,
gm_b,
matched_subgraph_pairs,
logger_cls,
should_log_inputs=should_log_inputs,
node_type_to_io_type_map=node_type_to_io_type_map,
)
return gm_a_shadows_b
[docs]def add_shadow_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs: bool = False,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> nn.Module:
"""
Instrument model A and model B with shadow loggers.
Args:
name_a: string name of model A to use in results
model_a: model A
name_b: string name of model B to use in results
model_b: model B
logger_cls: class of Logger to use
should_log_inputs: whether to log inputs
base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change
unmatchable_types_map: optional override of unmatchable types, subject to change
"""
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx.add_shadow_loggers"
)
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(
model_a, "node_name_to_scope"
)
if maybe_model_a_node_name_to_scope is not None:
gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(
model_b, "node_name_to_scope"
)
if maybe_model_b_node_name_to_scope is not None:
gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope
return _add_shadow_loggers_impl(
name_a,
gm_a,
name_b,
gm_b,
logger_cls,
should_log_inputs=should_log_inputs,
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops,
node_type_to_io_type_map=node_type_to_io_type_map,
unmatchable_types_map=unmatchable_types_map,
)
[docs]def extract_shadow_logger_info(
model_a_shadows_b: nn.Module,
logger_cls: Callable,
model_name_to_use_for_layer_names: str,
) -> NSResultsType:
"""
Traverse all loggers in a shadow model, and extract the logged
information.
Args:
model_a_shadows_b: shadow model
logger_cls: class of Logger to use
model_name_to_use_for_layer_names: string name of model to use for
layer names in the output
Return:
NSResultsType, containing the logged comparisons
"""
torch._C._log_api_usage_once(
"quantization_api._numeric_suite_fx.extract_shadow_logger_info"
)
results: NSResultsType = collections.defaultdict(dict)
_extract_logger_info_one_model(model_a_shadows_b, results, logger_cls)
# fill in missing fqn entries
maybe_add_missing_fqns(results)
# rekey on the name of model b
results = rekey_logger_info_on_node_name_of_model(
results, model_name_to_use_for_layer_names
)
return dict(results)
[docs]def extend_logger_results_with_comparison(
results: NSResultsType,
model_name_1: str,
model_name_2: str,
comparison_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
comparison_name: str,
) -> None:
"""
Compares the logged values from `model_name_2` against the corresponding
values in `model_name_1`, using `comparison_fn`. Records the result
in `model_name_2`'s results under `comparison_name`. Modifies `results` inplace.
Args:
results: the result data structure from `extract_logger_info` or
`extract_shadow_logger_info`.
model_name_1: string name of model 1
model_name_2: string name of model 2
comparison_fn: function to compare two Tensors
comparison_name: string name of model to use for
layer names in the output
"""
for results_type_to_results in results.values():
for model_name_to_results in results_type_to_results.values():
assert (
model_name_1 in model_name_to_results
), f"{model_name_1} not found in results"
assert (
model_name_2 in model_name_to_results
), f"{model_name_2} not found in results"
results_1 = model_name_to_results[model_name_1]
results_2 = model_name_to_results[model_name_2]
for result_2 in results_2:
index_within_arg_2 = result_2["index_within_arg"]
index_of_arg_2 = result_2["index_of_arg"]
# find corresponding result_1
result_1 = None
for cur_result_1 in results_1:
index_within_arg_1 = cur_result_1["index_within_arg"]
index_of_arg_1 = cur_result_1["index_of_arg"]
if (index_within_arg_1 == index_within_arg_2) and (
index_of_arg_1 == index_of_arg_2
):
result_1 = cur_result_1
break
assert result_1 is not None
values_1 = result_1["values"]
values_2 = result_2["values"]
result_2[comparison_name] = []
for value_1, value_2 in zip(values_1, values_2):
comparison_result = comparison_fn(value_1, value_2)
result_2[comparison_name].append(comparison_result)
[docs]def prepare_n_shadows_model(
model: torch.nn.Module,
example_inputs: Any,
qconfig_multi_mapping: QConfigMultiMapping,
backend_config: BackendConfig,
custom_prepare_fn: Optional[Callable] = None,
custom_prepare_kwargs: Optional[Dict[str, Any]] = None,
custom_tracer: Any = None,
) -> GraphModule:
"""
Given a model with a graph with M ops such as
args_kwargs_m -> op_m -> output_m
And a set of N qconfigs for each op, creates a new model, with
each of the subgraph of `op_m` transformed into
.. code::
|---------> op_m_n -> log_m_n
| /
args_kwargs_m ---------> op_m -> log_m_0
Where op_m_n is op_m wrapped in a submodule and transformed with
qconfig_n, and its inner graph looks like
.. code::
args_m -------- op_m_prepared_with_qconfig_n -> out_m_n
/
kwargs_m ---
This is useful for testing different quantization of multiple layers in
a single pass through the model.
High level TODOs for future PRs:
* figure out a better way to name the output structure
* return a results data structure instead of printing it out
* add examples to docblocks
"""
if custom_tracer is None:
tracer = quantize_fx.QuantizationTracer([], [])
else:
tracer = custom_tracer
mt = torch.fx.GraphModule(model, tracer.trace(model))
# this is necessary to ensure logger FQNs get populated
mt._node_name_to_scope = tracer.node_name_to_scope # type: ignore[assignment]
# run example input propagation, we need this to call prepare_fx on
# individual subgraphs
output_prop = OutputProp(mt)
output_prop.propagate(*example_inputs)
# Find the set of subgraphs in the original graph which we need to
# consider.
modules = dict(mt.named_modules(remove_duplicate=False))
patterns = _get_pattern_to_quantize_handlers(backend_config)
root_node_getter_mapping = get_fusion_pattern_to_root_node_getter(backend_config)
standalone_module_names: List[str] = []
standalone_module_classes: List[Type] = []
custom_module_classes: List[Type] = []
matches = _find_matches(
mt.graph,
modules,
patterns,
root_node_getter_mapping,
standalone_module_names,
standalone_module_classes,
custom_module_classes,
)
subgraphs_dedup: Dict[str, List[Node]] = _get_dedup_subgraphs(matches)
# generate node to qconfig for each subgraph
# TODO(future PR): deduplicate repeating entries
list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]] = []
for qconfig_mapping in qconfig_multi_mapping.qconfig_mappings_list:
node_name_to_qconfig = _generate_node_name_to_qconfig(
mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope
)
list_of_node_name_to_qconfig.append(node_name_to_qconfig)
# For each region in the model, do the following:
# For each qconfig for that region, do the following:
# 1. create a copy of the region wrapped in a module
# 2. pass original args, original kwargs, and expected output to module
# 3. add an output comparison logger and hook it up to compare
# actual output to expected output
# 4. run `prepare_fx` on the module
for subgraph_idx, (match_name, nodes_in_this_subgraph) in enumerate(
subgraphs_dedup.items()
):
create_n_transformed_and_logged_copies_of_subgraph(
mt,
subgraph_idx,
match_name,
nodes_in_this_subgraph,
qconfig_multi_mapping.qconfig_mappings_list,
list_of_node_name_to_qconfig,
custom_prepare_fn,
custom_prepare_kwargs, # type: ignore[arg-type]
)
return mt
# TODO(future PR): we should rethink the names of all the PNP APIs
def _prepare_n_shadows_add_loggers_model(
model: torch.nn.Module,
example_inputs: Any,
qconfig_mapping: QConfigMapping,
backend_config: BackendConfig,
) -> torch.nn.Module:
r"""
Note: this API is not recommended for wide usage, it is only
provided for customers who need to migrate from the `add_loggers`
API.
This creates a model which provides logging for the following
problem: if we quantize `model` with `qconfig_mapping` and feed
the same input through both models, log the comparisons of
corresponding intermediate layers.
The problem is solved with a single model. Specifically, we
partition `model` into N subgraphs, create a copy of each relevant
subgraph, wrap it in a module, apply the quantization API to that
module, and hook up loggers to measure the comparisons.
Example starting graph:
x0 -> op0 -> x1 -> op1 -> x2
Example config: quantize op0 to int8, do nothing to op1.
The following graph will be created:
.. code::
x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log
\ \ \ # noqa: W605
---> op0_1 -> x1_1 ----> clog -> op1_0 -> x2_1 ----> clog
Where op0_0 is op0, op0_1 is op0 wrapped in a submodule and quantized
to int8, op1_0 is op1 (appearing in the graph twice), log is a logger,
and clog is a comparison logger.
"""
tracer = quantize_fx.QuantizationTracer([], [])
mt = torch.fx.GraphModule(model, tracer.trace(model))
# this is necessary to ensure logger FQNs get populated
mt._node_name_to_scope = tracer.node_name_to_scope # type: ignore[assignment]
# run example input propagation, we need this to call prepare_fx on
# individual subgraphs
output_prop = OutputProp(mt)
output_prop.propagate(*example_inputs)
# Find the set of subgraphs in the original graph which we need to
# consider.
modules = dict(mt.named_modules(remove_duplicate=False))
patterns = _get_pattern_to_quantize_handlers(backend_config)
root_node_getter_mapping = get_fusion_pattern_to_root_node_getter(backend_config)
standalone_module_names: List[str] = []
standalone_module_classes: List[Type] = []
custom_module_classes: List[Type] = []
matches = _find_matches(
mt.graph,
modules,
patterns,
root_node_getter_mapping,
standalone_module_names,
standalone_module_classes,
custom_module_classes,
)
subgraphs_dedup: Dict[str, List[Node]] = _get_dedup_subgraphs(matches)
# generate node to qconfig for each subgraph
node_name_to_qconfig = _generate_node_name_to_qconfig(
mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope
)
# Now, mutate the graph to be the add_loggers graph with propagation
# error.
create_add_loggers_graph(mt, subgraphs_dedup, qconfig_mapping, node_name_to_qconfig)
return mt
# TODO(future PR): we should rethink the names of all the PNP APIs
def _n_shadows_compare_weights(
model: torch.nn.Module,
example_inputs: Any,
qconfig_mapping: QConfigMapping,
backend_config: BackendConfig,
) -> NSResultsType:
"""
Note: this API is not recommended for wide usage, it is only
provided for customers who need to migrate from the `add_loggers`
API.
"""
qconfig_multi_mapping = QConfigMultiMapping.from_list_qconfig_mapping(
[qconfig_mapping]
)
mp = prepare_n_shadows_model(
model, example_inputs, qconfig_multi_mapping, backend_config
)
# passing inputs through the model is necessary to populate
# observers which observe weights with real values
mp(*example_inputs)
mq = convert_n_shadows_model(mp)
weight_comparison = extract_weight_comparison(mq)
return weight_comparison
# TODO(future PR): consider aligning API signature with other similar quantization
# functions (enable_fake_quant, etc)
[docs]def loggers_set_enabled(model: torch.nn.Module, enabled: bool) -> None:
"""
Sets the `enabled` setting on a `model`'s loggers
"""
for name, child in model.named_modules():
if isinstance(child, OutputLogger):
child.enabled = enabled
# TODO(future PR): consider aligning API signature with other similar quantization
# functions (enable_fake_quant, etc)
[docs]def loggers_set_save_activations(
model: torch.nn.Module,
save_activations: bool,
) -> None:
"""
Sets the `save_activations` setting on a `model`'s loggers
"""
for name, child in model.named_modules():
if isinstance(child, OutputLogger):
child.save_activations = save_activations
[docs]def convert_n_shadows_model(
model: GraphModule,
custom_convert_fn: Optional[Callable] = None,
custom_convert_kwargs: Optional[Dict[str, Any]] = None,
) -> GraphModule:
"""
Given a model from `prepare_n_shadows_model`, runs `convert_fx`
on each shadow submodule.
"""
for node in model.graph.nodes:
# TODO(future PR): consider matching in a safer way than
# node name string match
if node.name.startswith(SHADOW_WRAPPER_NODE_NAME_PREFIX):
orig_mod = getattr(model, node.name)
if custom_convert_fn is None:
converted_mod = torch.ao.quantization.quantize_fx.convert_fx(orig_mod)
else:
if custom_convert_kwargs is None:
custom_convert_kwargs = {}
converted_mod = custom_convert_fn(orig_mod, **custom_convert_kwargs)
setattr(model, node.name, converted_mod)
return model
[docs]def extract_results_n_shadows_model(model: torch.nn.Module) -> NSResultsType:
"""
Extracts logger results from `model`.
"""
results: NSResultsType = {}
_extract_logger_info_one_model(model, results, OutputLogger)
return results
[docs]def print_comparisons_n_shadows_model(results: NSResultsType) -> None:
"""
Prints a summary of extracted `results`.
"""
results_grouped = group_results_by_subgraph(results)
results_comparison = create_results_comparison(results_grouped)
print_n_shadows_summary(results_comparison)