Shortcuts

Template Struct ConvTransposeFuncOptions

Page Contents

Struct Documentation

template<size_t D>
struct torch::nn::functional::ConvTransposeFuncOptions

Options for a D-dimensional convolution functional.

Public Functions

auto bias(const torch::Tensor &new_bias) -> decltype(*this)

optional bias of shape (out_channels). Default: None

auto bias(torch::Tensor &&new_bias) -> decltype(*this)
const torch::Tensor &bias() const noexcept
torch::Tensor &bias() noexcept
auto stride(const ExpandingArray<D> &new_stride) -> decltype(*this)

The stride of the convolving kernel.

For a D-dim convolution, must be a single number or a list of D numbers.

auto stride(ExpandingArray<D> &&new_stride) -> decltype(*this)
const ExpandingArray<D> &stride() const noexcept
ExpandingArray<D> &stride() noexcept
auto padding(const ExpandingArray<D> &new_padding) -> decltype(*this)

Implicit paddings on both sides of the input.

For a D-dim convolution, must be a single number or a list of D numbers.

auto padding(ExpandingArray<D> &&new_padding) -> decltype(*this)
const ExpandingArray<D> &padding() const noexcept
ExpandingArray<D> &padding() noexcept
auto output_padding(const ExpandingArray<D> &new_output_padding) -> decltype(*this)

Additional size added to one side of each dimension in the output shape. Default: 0.

auto output_padding(ExpandingArray<D> &&new_output_padding) -> decltype(*this)
const ExpandingArray<D> &output_padding() const noexcept
ExpandingArray<D> &output_padding() noexcept
auto groups(const int64_t &new_groups) -> decltype(*this)

Split input into groups, in_channels should be divisible by the number of groups.

auto groups(int64_t &&new_groups) -> decltype(*this)
const int64_t &groups() const noexcept
int64_t &groups() noexcept
auto dilation(const ExpandingArray<D> &new_dilation) -> decltype(*this)

The spacing between kernel elements.

For a D-dim convolution, must be a single number or a list of D numbers.

auto dilation(ExpandingArray<D> &&new_dilation) -> decltype(*this)
const ExpandingArray<D> &dilation() const noexcept
ExpandingArray<D> &dilation() noexcept

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources