Template Struct ConvFuncOptions¶
Defined in File conv.h
Page Contents
Struct Documentation¶
-
template<size_t D>
struct ConvFuncOptions¶ Options for a
D
-dimensional convolution functional.Public Types
-
using padding_t = torch::nn::detail::conv_padding_t<D>¶
Public Functions
-
inline auto bias(const torch::Tensor &new_bias) -> decltype(*this)¶
optional bias of shape
(out_channels)
. Default:None
-
inline auto bias(torch::Tensor &&new_bias) -> decltype(*this)¶
-
inline const torch::Tensor &bias() const noexcept¶
-
inline torch::Tensor &bias() noexcept¶
-
inline auto stride(const ExpandingArray<D> &new_stride) -> decltype(*this)¶
The stride of the convolving kernel.
For a
D
-dim convolution, must be a single number or a list ofD
numbers.
-
inline auto stride(ExpandingArray<D> &&new_stride) -> decltype(*this)¶
-
inline const ExpandingArray<D> &stride() const noexcept¶
-
inline ExpandingArray<D> &stride() noexcept¶
-
inline auto padding(const padding_t &new_padding) -> decltype(*this)¶
Implicit paddings on both sides of the input.
For a
D
-dim convolution, must be a single number or a list ofD
numbers.
-
inline decltype(auto) padding(std::initializer_list<int64_t> il)¶
-
inline auto dilation(const ExpandingArray<D> &new_dilation) -> decltype(*this)¶
The spacing between kernel elements.
For a
D
-dim convolution, must be a single number or a list ofD
numbers.
-
inline auto dilation(ExpandingArray<D> &&new_dilation) -> decltype(*this)¶
-
inline const ExpandingArray<D> &dilation() const noexcept¶
-
inline ExpandingArray<D> &dilation() noexcept¶
-
inline auto groups(const int64_t &new_groups) -> decltype(*this)¶
Split input into groups,
in_channels
should be divisible by the number of groups.
-
inline auto groups(int64_t &&new_groups) -> decltype(*this)¶
-
inline const int64_t &groups() const noexcept¶
-
inline int64_t &groups() noexcept¶
-
using padding_t = torch::nn::detail::conv_padding_t<D>¶