Shortcuts

IEMOCAP

class torchaudio.datasets.IEMOCAP(root: Union[str, Path], sessions: Tuple[str] = (1, 2, 3, 4, 5), utterance_type: Optional[str] = None)[source]

IEMOCAP [Busso et al., 2008] dataset.

Parameters:
  • root (str or Path) – Root directory where the dataset’s top level directory is found

  • sessions (Tuple[int]) – Tuple of sessions (1-5) to use. (Default: (1, 2, 3, 4, 5))

  • utterance_type (str or None, optional) – Which type(s) of utterances to include in the dataset. Options: (“scripted”, “improvised”, None). If None, both scripted and improvised data are used.

__getitem__

IEMOCAP.__getitem__(n: int) Tuple[Tensor, int, str, str, str][source]

Load the n-th sample from the dataset.

Parameters:

n (int) – The index of the sample to be loaded

Returns:

Tuple of the following items;

Tensor:

Waveform

int:

Sample rate

str:

File name

str:

Label (one of "neu", "hap", "ang", "sad", "exc", "fru")

str:

Speaker

get_metadata

IEMOCAP.get_metadata(n: int) Tuple[str, int, str, str, str][source]

Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as __getitem__().

Parameters:

n (int) – The index of the sample to be loaded

Returns:

Tuple of the following items;

str:

Path to audio

int:

Sample rate

str:

File name

str:

Label (one of "neu", "hap", "ang", "sad", "exc", "fru")

str:

Speaker

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources