Shortcuts

Source code for torchaudio.datasets.iemocap

import os
import re
from pathlib import Path
from typing import Optional, Tuple, Union

from torch import Tensor
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _load_waveform


_SAMPLE_RATE = 16000


def _get_wavs_paths(data_dir):
    wav_dir = data_dir / "sentences" / "wav"
    wav_paths = sorted(str(p) for p in wav_dir.glob("*/*.wav"))
    relative_paths = []
    for wav_path in wav_paths:
        start = wav_path.find("Session")
        wav_path = wav_path[start:]
        relative_paths.append(wav_path)
    return relative_paths


[docs]class IEMOCAP(Dataset): """*IEMOCAP* :cite:`iemocap` dataset. Args: root (str or Path): Root directory where the dataset's top level directory is found sessions (Tuple[int]): Tuple of sessions (1-5) to use. (Default: ``(1, 2, 3, 4, 5)``) utterance_type (str or None, optional): Which type(s) of utterances to include in the dataset. Options: ("scripted", "improvised", ``None``). If ``None``, both scripted and improvised data are used. """ def __init__( self, root: Union[str, Path], sessions: Tuple[str] = (1, 2, 3, 4, 5), utterance_type: Optional[str] = None, ): root = Path(root) self._path = root / "IEMOCAP" if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") if utterance_type not in ["scripted", "improvised", None]: raise ValueError("utterance_type must be one of ['scripted', 'improvised', or None]") all_data = [] self.data = [] self.mapping = {} for session in sessions: session_name = f"Session{session}" session_dir = self._path / session_name # get wav paths wav_paths = _get_wavs_paths(session_dir) for wav_path in wav_paths: wav_stem = str(Path(wav_path).stem) all_data.append(wav_stem) # add labels label_dir = session_dir / "dialog" / "EmoEvaluation" query = "*.txt" if utterance_type == "scripted": query = "*script*.txt" elif utterance_type == "improvised": query = "*impro*.txt" label_paths = label_dir.glob(query) for label_path in label_paths: with open(label_path, "r") as f: for line in f: if not line.startswith("["): continue line = re.split("[\t\n]", line) wav_stem = line[1] label = line[2] if wav_stem not in all_data: continue if label not in ["neu", "hap", "ang", "sad", "exc", "fru"]: continue self.mapping[wav_stem] = {} self.mapping[wav_stem]["label"] = label for wav_path in wav_paths: wav_stem = str(Path(wav_path).stem) if wav_stem in self.mapping: self.data.append(wav_stem) self.mapping[wav_stem]["path"] = wav_path
[docs] def get_metadata(self, n: int) -> Tuple[str, int, str, str, str]: """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, but otherwise returns the same fields as :py:meth:`__getitem__`. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; str: Path to audio int: Sample rate str: File name str: Label (one of ``"neu"``, ``"hap"``, ``"ang"``, ``"sad"``, ``"exc"``, ``"fru"``) str: Speaker """ wav_stem = self.data[n] wav_path = self.mapping[wav_stem]["path"] label = self.mapping[wav_stem]["label"] speaker = wav_stem.split("_")[0] return (wav_path, _SAMPLE_RATE, wav_stem, label, speaker)
[docs] def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: File name str: Label (one of ``"neu"``, ``"hap"``, ``"ang"``, ``"sad"``, ``"exc"``, ``"fru"``) str: Speaker """ metadata = self.get_metadata(n) waveform = _load_waveform(self._path, metadata[0], metadata[1]) return (waveform,) + metadata[1:]
def __len__(self): return len(self.data)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources