Source code for torchaudio.models.wav2vec2.utils.import_huggingface
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
"""
import logging
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model
_LG = logging.getLogger(__name__)
def _get_config(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_num_heads": cfg.num_attention_heads,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": cfg.intermediate_size,
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
}
return config
def _build(config, original):
if original.__class__.__name__ == "Wav2Vec2ForCTC":
aux_num_out = original.config.vocab_size
wav2vec2 = original.wav2vec2
else:
_LG.warning("The model is not an instance of Wav2Vec2ForCTC. " '"lm_head" module is not imported.')
aux_num_out = None
wav2vec2 = original
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict())
imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict())
imported.encoder.transformer.load_state_dict(wav2vec2.encoder.state_dict())
if original.__class__.__name__ == "Wav2Vec2ForCTC":
imported.aux.load_state_dict(original.lm_head.state_dict())
return imported
[docs]def import_huggingface_model(original: Module) -> Wav2Vec2Model:
"""import_huggingface_model(original: torch.nn.Module) -> torchaudio.models.Wav2Vec2Model
Build Wav2Vec2Model from the corresponding model object of Hugging Face's `Transformers`_.
Args:
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
Returns:
Wav2Vec2Model: Imported model.
Example
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
>>>
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = import_huggingface_model(original)
>>>
>>> waveforms, _ = torchaudio.load("audio.wav")
>>> logits, _ = model(waveforms)
.. _Transformers: https://huggingface.co/transformers/
"""
_LG.info("Importing model.")
_LG.info("Loading model configuration.")
config = _get_config(original.config)
_LG.debug(" - config: %s", config)
_LG.info("Building model.")
imported = _build(config, original)
return imported