Source code for torchaudio.models.emformer
import math
from typing import List, Optional, Tuple
import torch
__all__ = ["Emformer"]
def _lengths_to_padding_mask(lengths: torch.Tensor) -> torch.Tensor:
batch_size = lengths.shape[0]
max_length = int(torch.max(lengths).item())
padding_mask = torch.arange(max_length, device=lengths.device, dtype=lengths.dtype).expand(
batch_size, max_length
) >= lengths.unsqueeze(1)
return padding_mask
def _gen_padding_mask(
utterance: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
lengths: torch.Tensor,
mems: torch.Tensor,
left_context_key: Optional[torch.Tensor] = None,
) -> Optional[torch.Tensor]:
T = right_context.size(0) + utterance.size(0) + summary.size(0)
B = right_context.size(1)
if B == 1:
padding_mask = None
else:
right_context_blocks_length = T - torch.max(lengths).int() - summary.size(0)
left_context_blocks_length = left_context_key.size(0) if left_context_key is not None else 0
klengths = lengths + mems.size(0) + right_context_blocks_length + left_context_blocks_length
padding_mask = _lengths_to_padding_mask(lengths=klengths)
return padding_mask
def _get_activation_module(activation: str) -> torch.nn.Module:
if activation == "relu":
return torch.nn.ReLU()
elif activation == "gelu":
return torch.nn.GELU()
elif activation == "silu":
return torch.nn.SiLU()
else:
raise ValueError(f"Unsupported activation {activation}")
def _get_weight_init_gains(weight_init_scale_strategy: Optional[str], num_layers: int) -> List[Optional[float]]:
if weight_init_scale_strategy is None:
return [None for _ in range(num_layers)]
elif weight_init_scale_strategy == "depthwise":
return [1.0 / math.sqrt(layer_idx + 1) for layer_idx in range(num_layers)]
elif weight_init_scale_strategy == "constant":
return [1.0 / math.sqrt(2) for layer_idx in range(num_layers)]
else:
raise ValueError(f"Unsupported weight_init_scale_strategy value {weight_init_scale_strategy}")
def _gen_attention_mask_block(
col_widths: List[int], col_mask: List[bool], num_rows: int, device: torch.device
) -> torch.Tensor:
assert len(col_widths) == len(col_mask), "Length of col_widths must match that of col_mask"
mask_block = [
torch.ones(num_rows, col_width, device=device)
if is_ones_col
else torch.zeros(num_rows, col_width, device=device)
for col_width, is_ones_col in zip(col_widths, col_mask)
]
return torch.cat(mask_block, dim=1)
class _EmformerAttention(torch.nn.Module):
r"""Emformer layer attention module.
Args:
input_dim (int): input dimension.
num_heads (int): number of attention heads in each Emformer layer.
dropout (float, optional): dropout probability. (Default: 0.0)
weight_init_gain (float or None, optional): scale factor to apply when initializing
attention module parameters. (Default: ``None``)
tanh_on_mem (bool, optional): if ``True``, applies tanh to memory elements. (Default: ``False``)
negative_inf (float, optional): value to use for negative infinity in attention weights. (Default: -1e8)
"""
def __init__(
self,
input_dim: int,
num_heads: int,
dropout: float = 0.0,
weight_init_gain: Optional[float] = None,
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
super().__init__()
if input_dim % num_heads != 0:
raise ValueError(f"input_dim ({input_dim}) is not a multiple of num_heads ({num_heads}).")
self.input_dim = input_dim
self.num_heads = num_heads
self.dropout = dropout
self.tanh_on_mem = tanh_on_mem
self.negative_inf = negative_inf
self.scaling = (self.input_dim // self.num_heads) ** -0.5
self.emb_to_key_value = torch.nn.Linear(input_dim, 2 * input_dim, bias=True)
self.emb_to_query = torch.nn.Linear(input_dim, input_dim, bias=True)
self.out_proj = torch.nn.Linear(input_dim, input_dim, bias=True)
if weight_init_gain:
torch.nn.init.xavier_uniform_(self.emb_to_key_value.weight, gain=weight_init_gain)
torch.nn.init.xavier_uniform_(self.emb_to_query.weight, gain=weight_init_gain)
def _gen_key_value(self, input: torch.Tensor, mems: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
T, _, _ = input.shape
summary_length = mems.size(0) + 1
right_ctx_utterance_block = input[: T - summary_length]
mems_right_ctx_utterance_block = torch.cat([mems, right_ctx_utterance_block])
key, value = self.emb_to_key_value(mems_right_ctx_utterance_block).chunk(chunks=2, dim=2)
return key, value
def _gen_attention_probs(
self,
attention_weights: torch.Tensor,
attention_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor],
) -> torch.Tensor:
attention_weights_float = attention_weights.float()
attention_weights_float = attention_weights_float.masked_fill(attention_mask.unsqueeze(0), self.negative_inf)
T = attention_weights.size(1)
B = attention_weights.size(0) // self.num_heads
if padding_mask is not None:
attention_weights_float = attention_weights_float.view(B, self.num_heads, T, -1)
attention_weights_float = attention_weights_float.masked_fill(
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), self.negative_inf
)
attention_weights_float = attention_weights_float.view(B * self.num_heads, T, -1)
attention_probs = torch.nn.functional.softmax(attention_weights_float, dim=-1).type_as(attention_weights)
return torch.nn.functional.dropout(attention_probs, p=float(self.dropout), training=self.training)
def _forward_impl(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
mems: torch.Tensor,
attention_mask: torch.Tensor,
left_context_key: Optional[torch.Tensor] = None,
left_context_val: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
B = utterance.size(1)
T = right_context.size(0) + utterance.size(0) + summary.size(0)
# Compute query with [right context, utterance, summary].
query = self.emb_to_query(torch.cat([right_context, utterance, summary]))
# Compute key and value with [mems, right context, utterance].
key, value = self.emb_to_key_value(torch.cat([mems, right_context, utterance])).chunk(chunks=2, dim=2)
if left_context_key is not None and left_context_val is not None:
right_context_blocks_length = T - torch.max(lengths).int() - summary.size(0)
key = torch.cat(
[
key[: mems.size(0) + right_context_blocks_length],
left_context_key,
key[mems.size(0) + right_context_blocks_length :],
],
)
value = torch.cat(
[
value[: mems.size(0) + right_context_blocks_length],
left_context_val,
value[mems.size(0) + right_context_blocks_length :],
],
)
# Compute attention weights from query, key, and value.
reshaped_query, reshaped_key, reshaped_value = [
tensor.contiguous().view(-1, B * self.num_heads, self.input_dim // self.num_heads).transpose(0, 1)
for tensor in [query, key, value]
]
attention_weights = torch.bmm(reshaped_query * self.scaling, reshaped_key.transpose(1, 2))
# Compute padding mask.
padding_mask = _gen_padding_mask(utterance, right_context, summary, lengths, mems, left_context_key)
# Compute attention probabilities.
attention_probs = self._gen_attention_probs(attention_weights, attention_mask, padding_mask)
# Compute attention.
attention = torch.bmm(attention_probs, reshaped_value)
assert attention.shape == (
B * self.num_heads,
T,
self.input_dim // self.num_heads,
)
attention = attention.transpose(0, 1).contiguous().view(T, B, self.input_dim)
# Apply output projection.
output_right_context_mems = self.out_proj(attention)
summary_length = summary.size(0)
output_right_context = output_right_context_mems[: T - summary_length]
output_mems = output_right_context_mems[T - summary_length :]
if self.tanh_on_mem:
output_mems = torch.tanh(output_mems)
else:
output_mems = torch.clamp(output_mems, min=-10, max=10)
return output_right_context, output_mems, key, value
def forward(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
mems: torch.Tensor,
attention_mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""Forward pass for training.
B: batch size;
D: feature dimension of each frame;
T: number of utterance frames;
R: number of right context frames;
S: number of summary elements;
M: number of memory elements.
Args:
utterance (torch.Tensor): utterance frames, with shape `(T, B, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in ``utterance``.
right_context (torch.Tensor): right context frames, with shape `(R, B, D)`.
summary (torch.Tensor): summary elements, with shape `(S, B, D)`.
mems (torch.Tensor): memory elements, with shape `(M, B, D)`.
attention_mask (torch.Tensor): attention mask for underlying attention module.
Returns:
(Tensor, Tensor):
Tensor
output frames corresponding to utterance and right_context, with shape `(T + R, B, D)`.
Tensor
updated memory elements, with shape `(M, B, D)`.
"""
output, output_mems, _, _ = self._forward_impl(utterance, lengths, right_context, summary, mems, attention_mask)
return output, output_mems[:-1]
@torch.jit.export
def infer(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
mems: torch.Tensor,
left_context_key: torch.Tensor,
left_context_val: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
r"""Forward pass for inference.
B: batch size;
D: feature dimension of each frame;
T: number of utterance frames;
R: number of right context frames;
S: number of summary elements;
M: number of memory elements.
Args:
utterance (torch.Tensor): utterance frames, with shape `(T, B, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in ``utterance``.
right_context (torch.Tensor): right context frames, with shape `(R, B, D)`.
summary (torch.Tensor): summary elements, with shape `(S, B, D)`.
mems (torch.Tensor): memory elements, with shape `(M, B, D)`.
left_context_key (torch.Tensor): left context attention key computed from preceding invocation.
left_context_val (torch.Tensor): left context attention value computed from preceding invocation.
Returns:
(Tensor, Tensor, Tensor, and Tensor):
Tensor
output frames corresponding to utterance and right_context, with shape `(T + R, B, D)`.
Tensor
updated memory elements, with shape `(M, B, D)`.
Tensor
attention key computed for left context and utterance.
Tensor
attention value computed for left context and utterance.
"""
query_dim = right_context.size(0) + utterance.size(0) + summary.size(0)
key_dim = right_context.size(0) + utterance.size(0) + mems.size(0) + left_context_key.size(0)
attention_mask = torch.zeros(query_dim, key_dim).to(dtype=torch.bool, device=utterance.device)
attention_mask[-1, : mems.size(0)] = True
output, output_mems, key, value = self._forward_impl(
utterance,
lengths,
right_context,
summary,
mems,
attention_mask,
left_context_key=left_context_key,
left_context_val=left_context_val,
)
return (
output,
output_mems,
key[mems.size(0) + right_context.size(0) :],
value[mems.size(0) + right_context.size(0) :],
)
class _EmformerLayer(torch.nn.Module):
r"""Emformer layer that constitutes Emformer.
Args:
input_dim (int): input dimension.
num_heads (int): number of attention heads.
ffn_dim: (int): hidden layer dimension of feedforward network.
segment_length (int): length of each input segment.
dropout (float, optional): dropout probability. (Default: 0.0)
activation (str, optional): activation function to use in feedforward network.
Must be one of ("relu", "gelu", "silu"). (Default: "relu")
left_context_length (int, optional): length of left context. (Default: 0)
max_memory_size (int, optional): maximum number of memory elements to use. (Default: 0)
weight_init_gain (float or None, optional): scale factor to apply when initializing
attention module parameters. (Default: ``None``)
tanh_on_mem (bool, optional): if ``True``, applies tanh to memory elements. (Default: ``False``)
negative_inf (float, optional): value to use for negative infinity in attention weights. (Default: -1e8)
"""
def __init__(
self,
input_dim: int,
num_heads: int,
ffn_dim: int,
segment_length: int,
dropout: float = 0.0,
activation: str = "relu",
left_context_length: int = 0,
max_memory_size: int = 0,
weight_init_gain: Optional[float] = None,
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
super().__init__()
self.attention = _EmformerAttention(
input_dim=input_dim,
num_heads=num_heads,
dropout=dropout,
weight_init_gain=weight_init_gain,
tanh_on_mem=tanh_on_mem,
negative_inf=negative_inf,
)
self.dropout = torch.nn.Dropout(dropout)
self.memory_op = torch.nn.AvgPool1d(kernel_size=segment_length, stride=segment_length, ceil_mode=True)
activation_module = _get_activation_module(activation)
self.pos_ff = torch.nn.Sequential(
torch.nn.LayerNorm(input_dim),
torch.nn.Linear(input_dim, ffn_dim),
activation_module,
torch.nn.Dropout(dropout),
torch.nn.Linear(ffn_dim, input_dim),
torch.nn.Dropout(dropout),
)
self.layer_norm_input = torch.nn.LayerNorm(input_dim)
self.layer_norm_output = torch.nn.LayerNorm(input_dim)
self.left_context_length = left_context_length
self.segment_length = segment_length
self.max_memory_size = max_memory_size
self.input_dim = input_dim
self.use_mem = max_memory_size > 0
def _init_state(self, batch_size: int, device: Optional[torch.device]) -> List[torch.Tensor]:
empty_memory = torch.zeros(self.max_memory_size, batch_size, self.input_dim, device=device)
left_context_key = torch.zeros(self.left_context_length, batch_size, self.input_dim, device=device)
left_context_val = torch.zeros(self.left_context_length, batch_size, self.input_dim, device=device)
past_length = torch.zeros(1, batch_size, dtype=torch.int32, device=device)
return [empty_memory, left_context_key, left_context_val, past_length]
def _unpack_state(self, state: List[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
past_length = state[3][0][0].item()
past_left_context_length = min(self.left_context_length, past_length)
past_mem_length = min(self.max_memory_size, math.ceil(past_length / self.segment_length))
pre_mems = state[0][self.max_memory_size - past_mem_length :]
lc_key = state[1][self.left_context_length - past_left_context_length :]
lc_val = state[2][self.left_context_length - past_left_context_length :]
return pre_mems, lc_key, lc_val
def _pack_state(
self,
next_k: torch.Tensor,
next_v: torch.Tensor,
update_length: int,
mems: torch.Tensor,
state: List[torch.Tensor],
) -> List[torch.Tensor]:
new_k = torch.cat([state[1], next_k])
new_v = torch.cat([state[2], next_v])
state[0] = torch.cat([state[0], mems])[-self.max_memory_size :]
state[1] = new_k[new_k.shape[0] - self.left_context_length :]
state[2] = new_v[new_v.shape[0] - self.left_context_length :]
state[3] = state[3] + update_length
return state
def _process_attention_output(
self,
rc_output: torch.Tensor,
utterance: torch.Tensor,
right_context: torch.Tensor,
) -> torch.Tensor:
result = self.dropout(rc_output) + torch.cat([right_context, utterance])
result = self.pos_ff(result) + result
result = self.layer_norm_output(result)
return result
def _apply_pre_attention_layer_norm(
self, utterance: torch.Tensor, right_context: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
layer_norm_input = self.layer_norm_input(torch.cat([right_context, utterance]))
return (
layer_norm_input[right_context.size(0) :],
layer_norm_input[: right_context.size(0)],
)
def _apply_post_attention_ffn(
self, rc_output: torch.Tensor, utterance: torch.Tensor, right_context: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
rc_output = self._process_attention_output(rc_output, utterance, right_context)
return rc_output[right_context.size(0) :], rc_output[: right_context.size(0)]
def _apply_attention_forward(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
mems: torch.Tensor,
attention_mask: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
if attention_mask is None:
raise ValueError("attention_mask must be not None when for_inference is False")
if self.use_mem:
summary = self.memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)
else:
summary = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device)
rc_output, next_m = self.attention(
utterance=utterance,
lengths=lengths,
right_context=right_context,
summary=summary,
mems=mems,
attention_mask=attention_mask,
)
return rc_output, next_m
def _apply_attention_infer(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
mems: torch.Tensor,
state: Optional[List[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
if state is None:
state = self._init_state(utterance.size(1), device=utterance.device)
pre_mems, lc_key, lc_val = self._unpack_state(state)
if self.use_mem:
summary = self.memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)
summary = summary[:1]
else:
summary = torch.empty(0).to(dtype=utterance.dtype, device=utterance.device)
rc_output, next_m, next_k, next_v = self.attention.infer(
utterance=utterance,
lengths=lengths,
right_context=right_context,
summary=summary,
mems=pre_mems,
left_context_key=lc_key,
left_context_val=lc_val,
)
state = self._pack_state(next_k, next_v, utterance.size(0), mems, state)
return rc_output, next_m, state
def forward(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
mems: torch.Tensor,
attention_mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""Forward pass for training.
B: batch size;
D: feature dimension of each frame;
T: number of utterance frames;
R: number of right context frames;
M: number of memory elements.
Args:
utterance (torch.Tensor): utterance frames, with shape `(T, B, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in ``utterance``.
right_context (torch.Tensor): right context frames, with shape `(R, B, D)`.
mems (torch.Tensor): memory elements, with shape `(M, B, D)`.
attention_mask (torch.Tensor): attention mask for underlying attention module.
Returns:
(Tensor, Tensor, Tensor):
Tensor
encoded utterance frames, with shape `(T, B, D)`.
Tensor
updated right context frames, with shape `(R, B, D)`.
Tensor
updated memory elements, with shape `(M, B, D)`.
"""
(
layer_norm_utterance,
layer_norm_right_context,
) = self._apply_pre_attention_layer_norm(utterance, right_context)
rc_output, output_mems = self._apply_attention_forward(
layer_norm_utterance,
lengths,
layer_norm_right_context,
mems,
attention_mask,
)
output_utterance, output_right_context = self._apply_post_attention_ffn(rc_output, utterance, right_context)
return output_utterance, output_right_context, output_mems
@torch.jit.export
def infer(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
state: Optional[List[torch.Tensor]],
mems: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor], torch.Tensor]:
r"""Forward pass for inference.
B: batch size;
D: feature dimension of each frame;
T: number of utterance frames;
R: number of right context frames;
M: number of memory elements.
Args:
utterance (torch.Tensor): utterance frames, with shape `(T, B, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in ``utterance``.
right_context (torch.Tensor): right context frames, with shape `(R, B, D)`.
state (List[torch.Tensor] or None): list of tensors representing layer internal state
generated in preceding invocation of ``infer``.
mems (torch.Tensor): memory elements, with shape `(M, B, D)`.
Returns:
(Tensor, Tensor, List[torch.Tensor], Tensor):
Tensor
encoded utterance frames, with shape `(T, B, D)`.
Tensor
updated right context frames, with shape `(R, B, D)`.
List[Tensor]
list of tensors representing layer internal state
generated in current invocation of ``infer``.
Tensor
updated memory elements, with shape `(M, B, D)`.
"""
(
layer_norm_utterance,
layer_norm_right_context,
) = self._apply_pre_attention_layer_norm(utterance, right_context)
rc_output, output_mems, output_state = self._apply_attention_infer(
layer_norm_utterance, lengths, layer_norm_right_context, mems, state
)
output_utterance, output_right_context = self._apply_post_attention_ffn(rc_output, utterance, right_context)
return output_utterance, output_right_context, output_state, output_mems
class _EmformerImpl(torch.nn.Module):
def __init__(
self,
emformer_layers: torch.nn.ModuleList,
segment_length: int,
left_context_length: int = 0,
right_context_length: int = 0,
max_memory_size: int = 0,
):
super().__init__()
self.use_mem = max_memory_size > 0
self.memory_op = torch.nn.AvgPool1d(
kernel_size=segment_length,
stride=segment_length,
ceil_mode=True,
)
self.emformer_layers = emformer_layers
self.left_context_length = left_context_length
self.right_context_length = right_context_length
self.segment_length = segment_length
self.max_memory_size = max_memory_size
def _gen_right_context(self, input: torch.Tensor) -> torch.Tensor:
T = input.shape[0]
num_segs = math.ceil((T - self.right_context_length) / self.segment_length)
right_context_blocks = []
for seg_idx in range(num_segs - 1):
start = (seg_idx + 1) * self.segment_length
end = start + self.right_context_length
right_context_blocks.append(input[start:end])
right_context_blocks.append(input[T - self.right_context_length :])
return torch.cat(right_context_blocks)
def _gen_attention_mask_col_widths(self, seg_idx: int, utterance_length: int) -> List[int]:
num_segs = math.ceil(utterance_length / self.segment_length)
rc = self.right_context_length
lc = self.left_context_length
rc_start = seg_idx * rc
rc_end = rc_start + rc
seg_start = max(seg_idx * self.segment_length - lc, 0)
seg_end = min((seg_idx + 1) * self.segment_length, utterance_length)
rc_length = self.right_context_length * num_segs
if self.use_mem:
m_start = max(seg_idx - self.max_memory_size, 0)
mem_length = num_segs - 1
col_widths = [
m_start, # before memory
seg_idx - m_start, # memory
mem_length - seg_idx, # after memory
rc_start, # before right context
rc, # right context
rc_length - rc_end, # after right context
seg_start, # before query segment
seg_end - seg_start, # query segment
utterance_length - seg_end, # after query segment
]
else:
col_widths = [
rc_start, # before right context
rc, # right context
rc_length - rc_end, # after right context
seg_start, # before query segment
seg_end - seg_start, # query segment
utterance_length - seg_end, # after query segment
]
return col_widths
def _gen_attention_mask(self, input: torch.Tensor) -> torch.Tensor:
utterance_length = input.size(0)
num_segs = math.ceil(utterance_length / self.segment_length)
rc_mask = []
query_mask = []
summary_mask = []
if self.use_mem:
num_cols = 9
# memory, right context, query segment
rc_q_cols_mask = [idx in [1, 4, 7] for idx in range(num_cols)]
# right context, query segment
s_cols_mask = [idx in [4, 7] for idx in range(num_cols)]
masks_to_concat = [rc_mask, query_mask, summary_mask]
else:
num_cols = 6
# right context, query segment
rc_q_cols_mask = [idx in [1, 4] for idx in range(num_cols)]
s_cols_mask = None
masks_to_concat = [rc_mask, query_mask]
for seg_idx in range(num_segs):
col_widths = self._gen_attention_mask_col_widths(seg_idx, utterance_length)
rc_mask_block = _gen_attention_mask_block(
col_widths, rc_q_cols_mask, self.right_context_length, input.device
)
rc_mask.append(rc_mask_block)
query_mask_block = _gen_attention_mask_block(
col_widths,
rc_q_cols_mask,
min(
self.segment_length,
utterance_length - seg_idx * self.segment_length,
),
input.device,
)
query_mask.append(query_mask_block)
if s_cols_mask is not None:
summary_mask_block = _gen_attention_mask_block(col_widths, s_cols_mask, 1, input.device)
summary_mask.append(summary_mask_block)
attention_mask = (1 - torch.cat([torch.cat(mask) for mask in masks_to_concat])).to(torch.bool)
return attention_mask
def forward(self, input: torch.Tensor, lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
r"""Forward pass for training and non-streaming inference.
B: batch size;
T: max number of input frames in batch;
D: feature dimension of each frame.
Args:
input (torch.Tensor): utterance frames right-padded with right context frames, with
shape `(B, T + right_context_length, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid utterance frames for i-th batch element in ``input``.
Returns:
(Tensor, Tensor):
Tensor
output frames, with shape `(B, T, D)`.
Tensor
output lengths, with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in output frames.
"""
input = input.permute(1, 0, 2)
right_context = self._gen_right_context(input)
utterance = input[: input.size(0) - self.right_context_length]
attention_mask = self._gen_attention_mask(utterance)
mems = (
self.memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[:-1]
if self.use_mem
else torch.empty(0).to(dtype=input.dtype, device=input.device)
)
output = utterance
for layer in self.emformer_layers:
output, right_context, mems = layer(output, lengths, right_context, mems, attention_mask)
return output.permute(1, 0, 2), lengths
@torch.jit.export
def infer(
self,
input: torch.Tensor,
lengths: torch.Tensor,
states: Optional[List[List[torch.Tensor]]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, List[List[torch.Tensor]]]:
r"""Forward pass for streaming inference.
B: batch size;
D: feature dimension of each frame.
Args:
input (torch.Tensor): utterance frames right-padded with right context frames, with
shape `(B, segment_length + right_context_length, D)`.
lengths (torch.Tensor): with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in ``input``.
states (List[List[torch.Tensor]] or None, optional): list of lists of tensors
representing internal state generated in preceding invocation of ``infer``. (Default: ``None``)
Returns:
(Tensor, Tensor, List[List[Tensor]]):
Tensor
output frames, with shape `(B, segment_length, D)`.
Tensor
output lengths, with shape `(B,)` and i-th element representing
number of valid frames for i-th batch element in output frames.
List[List[Tensor]]
output states; list of lists of tensors representing internal state
generated in current invocation of ``infer``.
"""
assert input.size(1) == self.segment_length + self.right_context_length, (
"Per configured segment_length and right_context_length"
f", expected size of {self.segment_length + self.right_context_length} for dimension 1 of input"
f", but got {input.size(1)}."
)
input = input.permute(1, 0, 2)
right_context_start_idx = input.size(0) - self.right_context_length
right_context = input[right_context_start_idx:]
utterance = input[:right_context_start_idx]
output_lengths = torch.clamp(lengths - self.right_context_length, min=0)
mems = (
self.memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)
if self.use_mem
else torch.empty(0).to(dtype=input.dtype, device=input.device)
)
output = utterance
output_states: List[List[torch.Tensor]] = []
for layer_idx, layer in enumerate(self.emformer_layers):
output, right_context, output_state, mems = layer.infer(
output,
output_lengths,
right_context,
None if states is None else states[layer_idx],
mems,
)
output_states.append(output_state)
return output.permute(1, 0, 2), output_lengths, output_states
[docs]class Emformer(_EmformerImpl):
r"""Implements the Emformer architecture introduced in
*Emformer: Efficient Memory Transformer Based Acoustic Model for Low Latency Streaming Speech Recognition*
[:footcite:`shi2021emformer`].
Args:
input_dim (int): input dimension.
num_heads (int): number of attention heads in each Emformer layer.
ffn_dim (int): hidden layer dimension of each Emformer layer's feedforward network.
num_layers (int): number of Emformer layers to instantiate.
segment_length (int): length of each input segment.
dropout (float, optional): dropout probability. (Default: 0.0)
activation (str, optional): activation function to use in each Emformer layer's
feedforward network. Must be one of ("relu", "gelu", "silu"). (Default: "relu")
left_context_length (int, optional): length of left context. (Default: 0)
right_context_length (int, optional): length of right context. (Default: 0)
max_memory_size (int, optional): maximum number of memory elements to use. (Default: 0)
weight_init_scale_strategy (str or None, optional): per-layer weight initialization scaling
strategy. Must be one of ("depthwise", "constant", ``None``). (Default: "depthwise")
tanh_on_mem (bool, optional): if ``True``, applies tanh to memory elements. (Default: ``False``)
negative_inf (float, optional): value to use for negative infinity in attention weights. (Default: -1e8)
Examples:
>>> emformer = Emformer(512, 8, 2048, 20, 4, right_context_length=1)
>>> input = torch.rand(128, 400, 512) # batch, num_frames, feature_dim
>>> lengths = torch.randint(1, 200, (128,)) # batch
>>> output, lengths = emformer(input, lengths)
>>> input = torch.rand(128, 5, 512)
>>> lengths = torch.ones(128) * 5
>>> output, lengths, states = emformer.infer(input, lengths, None)
"""
def __init__(
self,
input_dim: int,
num_heads: int,
ffn_dim: int,
num_layers: int,
segment_length: int,
dropout: float = 0.0,
activation: str = "relu",
left_context_length: int = 0,
right_context_length: int = 0,
max_memory_size: int = 0,
weight_init_scale_strategy: Optional[str] = "depthwise",
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
weight_init_gains = _get_weight_init_gains(weight_init_scale_strategy, num_layers)
emformer_layers = torch.nn.ModuleList(
[
_EmformerLayer(
input_dim,
num_heads,
ffn_dim,
segment_length,
dropout=dropout,
activation=activation,
left_context_length=left_context_length,
max_memory_size=max_memory_size,
weight_init_gain=weight_init_gains[layer_idx],
tanh_on_mem=tanh_on_mem,
negative_inf=negative_inf,
)
for layer_idx in range(num_layers)
]
)
super().__init__(
emformer_layers,
segment_length,
left_context_length=left_context_length,
right_context_length=right_context_length,
max_memory_size=max_memory_size,
)