Shortcuts

Source code for torchaudio.datasets.librimix

from pathlib import Path
from typing import List, Tuple, Union

import torch
import torchaudio
from torch.utils.data import Dataset

SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]]


[docs]class LibriMix(Dataset): r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files)
[docs] def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources