Source code for torchaudio.datasets.librimix
from pathlib import Path
from typing import List, Tuple, Union
import torch
import torchaudio
from torch.utils.data import Dataset
SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]]
[docs]class LibriMix(Dataset):
r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset.
Args:
root (str or Path): The path to the directory where the directory ``Libri2Mix`` or
``Libri3Mix`` is stored.
subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``,
``dev``, and ``test``] (Default: ``train-360``).
num_speakers (int, optional): The number of speakers, which determines the directories
to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect
N source audios. (Default: 2)
sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines
which subdirectory the audio are fetched. If any of the audio has a different sample
rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000)
task (str, optional): the task of LibriMix.
Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``]
(Default: ``sep_clean``)
Note:
The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix
"""
def __init__(
self,
root: Union[str, Path],
subset: str = "train-360",
num_speakers: int = 2,
sample_rate: int = 8000,
task: str = "sep_clean",
):
self.root = Path(root) / f"Libri{num_speakers}Mix"
if sample_rate == 8000:
self.root = self.root / "wav8k/min" / subset
elif sample_rate == 16000:
self.root = self.root / "wav16k/min" / subset
else:
raise ValueError(f"Unsupported sample rate. Found {sample_rate}.")
self.sample_rate = sample_rate
self.task = task
self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve()
self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)]
self.files = [p.name for p in self.mix_dir.glob("*wav")]
self.files.sort()
def _load_audio(self, path) -> torch.Tensor:
waveform, sample_rate = torchaudio.load(path)
if sample_rate != self.sample_rate:
raise ValueError(
f"The dataset contains audio file of sample rate {sample_rate}, "
f"but the requested sample rate is {self.sample_rate}."
)
return waveform
def _load_sample(self, filename) -> SampleType:
mixed = self._load_audio(str(self.mix_dir / filename))
srcs = []
for i, dir_ in enumerate(self.src_dirs):
src = self._load_audio(str(dir_ / filename))
if mixed.shape != src.shape:
raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}")
srcs.append(src)
return self.sample_rate, mixed, srcs
def __len__(self) -> int:
return len(self.files)
[docs] def __getitem__(self, key: int) -> SampleType:
"""Load the n-th sample from the dataset.
Args:
key (int): The index of the sample to be loaded
Returns:
(int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)``
"""
return self._load_sample(self.files[key])