Source code for torchaudio.datasets.librilight_limited
import os
from pathlib import Path
from typing import List, Tuple, Union
from torch import Tensor
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.librispeech import load_librispeech_item
from torchaudio.datasets.utils import extract_archive
_ARCHIVE_NAME = "librispeech_finetuning"
_URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz"
_CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af"
def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]:
"""Get the file names and the corresponding file paths without `speaker_id`
and `chapter_id` directories.
The format of path is like:
{root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or
{root}/{_ARCHIVE_NAME}/9h/[clean, other]
"""
if subset == "10min":
files_paths = [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio)
]
elif subset in ["1h", "10h"]:
files_paths = [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio)
]
if subset == "10h":
files_paths += [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("9h/*/*/*/*" + _ext_audio)
]
else:
raise ValueError(f"Unsupported subset value. Found {subset}.")
files_paths = sorted(files_paths, key=lambda x: x[0] + x[1])
return files_paths
[docs]class LibriLightLimited(Dataset):
"""Create a Dataset for LibriLightLimited, which is the supervised subset of
LibriLight dataset.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
subset (str, optional): The subset to use. Options: [``10min``, ``1h``, ``10h``]
(Default: ``10min``).
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
"""
_ext_txt = ".trans.txt"
_ext_audio = ".flac"
def __init__(
self,
root: Union[str, Path],
subset: str = "10min",
download: bool = False,
) -> None:
assert subset in ["10min", "1h", "10h"], "`subset` must be one of ['10min', '1h', '10h']"
root = os.fspath(root)
self._path = os.path.join(root, _ARCHIVE_NAME)
archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz")
if not os.path.isdir(self._path):
if not download:
raise RuntimeError("Dataset not found. Please use `download=True` to download")
if not os.path.isfile(archive):
download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM)
extract_archive(archive)
self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio)
[docs] def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
(Tensor, int, str, int, int, int):
``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)``
"""
file_path, fileid = self._fileids_paths[n]
return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt)
def __len__(self) -> int:
return len(self._fileids_paths)