RandomPerspective¶
- class torchvision.transforms.v2.RandomPerspective(distortion_scale: float = 0.5, p: float = 0.5, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, fill: Union[int, float, Sequence[int], Sequence[float], None, Dict[Union[Type, str], Optional[Union[int, float, Sequence[int], Sequence[float]]]]] = 0)[source]¶
Perform a random perspective transformation of the input with a given probability.
If the input is a
torch.Tensor
or aTVTensor
(e.g.Image
,Video
,BoundingBoxes
etc.) it can have arbitrary number of leading batch dimensions. For example, the image can have[..., C, H, W]
shape. A bounding box can have[..., 4]
shape.- Parameters:
distortion_scale (float, optional) – argument to control the degree of distortion and ranges from 0 to 1. Default is 0.5.
p (float, optional) – probability of the input being transformed. Default is 0.5.
interpolation (InterpolationMode, optional) – Desired interpolation enum defined by
torchvision.transforms.InterpolationMode
. Default isInterpolationMode.BILINEAR
. If input is Tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
are supported. The corresponding Pillow integer constants, e.g.PIL.Image.BILINEAR
are accepted as well.fill (number or tuple or dict, optional) – Pixel fill value used when the
padding_mode
is constant. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. Fill value can be also a dictionary mapping data type to the fill value, e.g.fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}
whereImage
will be filled with 127 andMask
will be filled with 0.
Examples using
RandomPerspective
:Illustration of transforms- static get_params(width: int, height: int, distortion_scale: float) Tuple[List[List[int]], List[List[int]]] [source]¶
Get parameters for
perspective
for a random perspective transform.- Parameters:
- Returns:
List containing [top-left, top-right, bottom-right, bottom-left] of the original image, List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.