Shortcuts

Kitti2012Stereo

class torchvision.datasets.Kitti2012Stereo(root: Union[str, Path], split: str = 'train', transforms: Optional[Callable] = None)[source]

KITTI dataset from the 2012 stereo evaluation benchmark. Uses the RGB images for consistency with KITTI 2015.

The dataset is expected to have the following structure:

root
    Kitti2012
        testing
            colored_0
                1_10.png
                2_10.png
                ...
            colored_1
                1_10.png
                2_10.png
                ...
        training
            colored_0
                1_10.png
                2_10.png
                ...
            colored_1
                1_10.png
                2_10.png
                ...
            disp_noc
                1.png
                2.png
                ...
            calib
Parameters:
  • root (str or pathlib.Path) – Root directory where Kitti2012 is located.

  • split (string, optional) – The dataset split of scenes, either “train” (default) or “test”.

  • transforms (callable, optional) – A function/transform that takes in a sample and returns a transformed version.

Special-members:

__getitem__(index: int) Tuple[Image, Image, Optional[ndarray], ndarray][source]

Return example at given index.

Parameters:

index (int) – The index of the example to retrieve

Returns:

A 4-tuple with (img_left, img_right, disparity, valid_mask). The disparity is a numpy array of shape (1, H, W) and the images are PIL images. valid_mask is implicitly None if the transforms parameter does not generate a valid mask. Both disparity and valid_mask are None if the dataset split is test.

Return type:

tuple

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources