Source code for torchvision.datasets._stereo_matching
import functools
import json
import os
import random
import shutil
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path
from typing import Callable, cast, List, Optional, Tuple, Union
import numpy as np
from PIL import Image
from .utils import _read_pfm, download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
T1 = Tuple[Image.Image, Image.Image, Optional[np.ndarray], np.ndarray]
T2 = Tuple[Image.Image, Image.Image, Optional[np.ndarray]]
__all__ = ()
_read_pfm_file = functools.partial(_read_pfm, slice_channels=1)
class StereoMatchingDataset(ABC, VisionDataset):
"""Base interface for Stereo matching datasets"""
_has_built_in_disparity_mask = False
def __init__(self, root: Union[str, Path], transforms: Optional[Callable] = None) -> None:
"""
Args:
root(str): Root directory of the dataset.
transforms(callable, optional): A function/transform that takes in Tuples of
(images, disparities, valid_masks) and returns a transformed version of each of them.
images is a Tuple of (``PIL.Image``, ``PIL.Image``)
disparities is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (1, H, W)
valid_masks is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (H, W)
In some cases, when a dataset does not provide disparities, the ``disparities`` and
``valid_masks`` can be Tuples containing None values.
For training splits generally the datasets provide a minimal guarantee of
images: (``PIL.Image``, ``PIL.Image``)
disparities: (``np.ndarray``, ``None``) with shape (1, H, W)
Optionally, based on the dataset, it can return a ``mask`` as well:
valid_masks: (``np.ndarray | None``, ``None``) with shape (H, W)
For some test splits, the datasets provides outputs that look like:
imgaes: (``PIL.Image``, ``PIL.Image``)
disparities: (``None``, ``None``)
Optionally, based on the dataset, it can return a ``mask`` as well:
valid_masks: (``None``, ``None``)
"""
super().__init__(root=root)
self.transforms = transforms
self._images = [] # type: ignore
self._disparities = [] # type: ignore
def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
img = Image.open(file_path)
if img.mode != "RGB":
img = img.convert("RGB") # type: ignore [assignment]
return img
def _scan_pairs(
self,
paths_left_pattern: str,
paths_right_pattern: Optional[str] = None,
) -> List[Tuple[str, Optional[str]]]:
left_paths = list(sorted(glob(paths_left_pattern)))
right_paths: List[Union[None, str]]
if paths_right_pattern:
right_paths = list(sorted(glob(paths_right_pattern)))
else:
right_paths = list(None for _ in left_paths)
if not left_paths:
raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_left_pattern}")
if not right_paths:
raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_right_pattern}")
if len(left_paths) != len(right_paths):
raise ValueError(
f"Found {len(left_paths)} left files but {len(right_paths)} right files using:\n "
f"left pattern: {paths_left_pattern}\n"
f"right pattern: {paths_right_pattern}\n"
)
paths = list((left, right) for left, right in zip(left_paths, right_paths))
return paths
@abstractmethod
def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
# function that returns a disparity map and an occlusion map
pass
def __getitem__(self, index: int) -> Union[T1, T2]:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3 or 4-tuple with ``(img_left, img_right, disparity, Optional[valid_mask])`` where ``valid_mask``
can be a numpy boolean mask of shape (H, W) if the dataset provides a file
indicating which disparity pixels are valid. The disparity is a numpy array of
shape (1, H, W) and the images are PIL images. ``disparity`` is None for
datasets on which for ``split="test"`` the authors did not provide annotations.
"""
img_left = self._read_img(self._images[index][0])
img_right = self._read_img(self._images[index][1])
dsp_map_left, valid_mask_left = self._read_disparity(self._disparities[index][0])
dsp_map_right, valid_mask_right = self._read_disparity(self._disparities[index][1])
imgs = (img_left, img_right)
dsp_maps = (dsp_map_left, dsp_map_right)
valid_masks = (valid_mask_left, valid_mask_right)
if self.transforms is not None:
(
imgs,
dsp_maps,
valid_masks,
) = self.transforms(imgs, dsp_maps, valid_masks)
if self._has_built_in_disparity_mask or valid_masks[0] is not None:
return imgs[0], imgs[1], dsp_maps[0], cast(np.ndarray, valid_masks[0])
else:
return imgs[0], imgs[1], dsp_maps[0]
def __len__(self) -> int:
return len(self._images)
[docs]class CarlaStereo(StereoMatchingDataset):
"""
Carla simulator data linked in the `CREStereo github repo <https://github.com/megvii-research/CREStereo>`_.
The dataset is expected to have the following structure: ::
root
carla-highres
trainingF
scene1
img0.png
img1.png
disp0GT.pfm
disp1GT.pfm
calib.txt
scene2
img0.png
img1.png
disp0GT.pfm
disp1GT.pfm
calib.txt
...
Args:
root (str or ``pathlib.Path``): Root directory where `carla-highres` is located.
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
def __init__(self, root: Union[str, Path], transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
root = Path(root) / "carla-highres"
left_image_pattern = str(root / "trainingF" / "*" / "im0.png")
right_image_pattern = str(root / "trainingF" / "*" / "im1.png")
imgs = self._scan_pairs(left_image_pattern, right_image_pattern)
self._images = imgs
left_disparity_pattern = str(root / "trainingF" / "*" / "disp0GT.pfm")
right_disparity_pattern = str(root / "trainingF" / "*" / "disp1GT.pfm")
disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
self._disparities = disparities
def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]:
disparity_map = _read_pfm_file(file_path)
disparity_map = np.abs(disparity_map) # ensure that the disparity is positive
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
If a ``valid_mask`` is generated within the ``transforms`` parameter,
a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
"""
return cast(T1, super().__getitem__(index))
[docs]class Kitti2012Stereo(StereoMatchingDataset):
"""
KITTI dataset from the `2012 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php>`_.
Uses the RGB images for consistency with KITTI 2015.
The dataset is expected to have the following structure: ::
root
Kitti2012
testing
colored_0
1_10.png
2_10.png
...
colored_1
1_10.png
2_10.png
...
training
colored_0
1_10.png
2_10.png
...
colored_1
1_10.png
2_10.png
...
disp_noc
1.png
2.png
...
calib
Args:
root (str or ``pathlib.Path``): Root directory where `Kitti2012` is located.
split (string, optional): The dataset split of scenes, either "train" (default) or "test".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
_has_built_in_disparity_mask = True
def __init__(self, root: Union[str, Path], split: str = "train", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "Kitti2012" / (split + "ing")
left_img_pattern = str(root / "colored_0" / "*_10.png")
right_img_pattern = str(root / "colored_1" / "*_10.png")
self._images = self._scan_pairs(left_img_pattern, right_img_pattern)
if split == "train":
disparity_pattern = str(root / "disp_noc" / "*.png")
self._disparities = self._scan_pairs(disparity_pattern, None)
else:
self._disparities = list((None, None) for _ in self._images)
def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], None]:
# test split has no disparity maps
if file_path is None:
return None, None
disparity_map = np.asarray(Image.open(file_path)) / 256.0
# unsqueeze the disparity map into (C, H, W) format
disparity_map = disparity_map[None, :, :]
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
generate a valid mask.
Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
"""
return cast(T1, super().__getitem__(index))
[docs]class Kitti2015Stereo(StereoMatchingDataset):
"""
KITTI dataset from the `2015 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php>`_.
The dataset is expected to have the following structure: ::
root
Kitti2015
testing
image_2
img1.png
img2.png
...
image_3
img1.png
img2.png
...
training
image_2
img1.png
img2.png
...
image_3
img1.png
img2.png
...
disp_occ_0
img1.png
img2.png
...
disp_occ_1
img1.png
img2.png
...
calib
Args:
root (str or ``pathlib.Path``): Root directory where `Kitti2015` is located.
split (string, optional): The dataset split of scenes, either "train" (default) or "test".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
_has_built_in_disparity_mask = True
def __init__(self, root: Union[str, Path], split: str = "train", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "Kitti2015" / (split + "ing")
left_img_pattern = str(root / "image_2" / "*.png")
right_img_pattern = str(root / "image_3" / "*.png")
self._images = self._scan_pairs(left_img_pattern, right_img_pattern)
if split == "train":
left_disparity_pattern = str(root / "disp_occ_0" / "*.png")
right_disparity_pattern = str(root / "disp_occ_1" / "*.png")
self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
else:
self._disparities = list((None, None) for _ in self._images)
def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], None]:
# test split has no disparity maps
if file_path is None:
return None, None
disparity_map = np.asarray(Image.open(file_path)) / 256.0
# unsqueeze the disparity map into (C, H, W) format
disparity_map = disparity_map[None, :, :]
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
generate a valid mask.
Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
"""
return cast(T1, super().__getitem__(index))
[docs]class Middlebury2014Stereo(StereoMatchingDataset):
"""Publicly available scenes from the Middlebury dataset `2014 version <https://vision.middlebury.edu/stereo/data/scenes2014/>`.
The dataset mostly follows the original format, without containing the ambient subdirectories. : ::
root
Middlebury2014
train
scene1-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
scene2-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
...
additional
scene1-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
...
test
scene1
calib.txt
im{0,1}.png
scene2
calib.txt
im{0,1}.png
...
Args:
root (str or ``pathlib.Path``): Root directory of the Middleburry 2014 Dataset.
split (string, optional): The dataset split of scenes, either "train" (default), "test", or "additional"
use_ambient_views (boolean, optional): Whether to use different expose or lightning views when possible.
The dataset samples with equal probability between ``[im1.png, im1E.png, im1L.png]``.
calibration (string, optional): Whether or not to use the calibrated (default) or uncalibrated scenes.
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
download (boolean, optional): Whether or not to download the dataset in the ``root`` directory.
"""
splits = {
"train": [
"Adirondack",
"Jadeplant",
"Motorcycle",
"Piano",
"Pipes",
"Playroom",
"Playtable",
"Recycle",
"Shelves",
"Vintage",
],
"additional": [
"Backpack",
"Bicycle1",
"Cable",
"Classroom1",
"Couch",
"Flowers",
"Mask",
"Shopvac",
"Sticks",
"Storage",
"Sword1",
"Sword2",
"Umbrella",
],
"test": [
"Plants",
"Classroom2E",
"Classroom2",
"Australia",
"DjembeL",
"CrusadeP",
"Crusade",
"Hoops",
"Bicycle2",
"Staircase",
"Newkuba",
"AustraliaP",
"Djembe",
"Livingroom",
"Computer",
],
}
_has_built_in_disparity_mask = True
def __init__(
self,
root: Union[str, Path],
split: str = "train",
calibration: Optional[str] = "perfect",
use_ambient_views: bool = False,
transforms: Optional[Callable] = None,
download: bool = False,
) -> None:
super().__init__(root, transforms)
verify_str_arg(split, "split", valid_values=("train", "test", "additional"))
self.split = split
if calibration:
verify_str_arg(calibration, "calibration", valid_values=("perfect", "imperfect", "both", None)) # type: ignore
if split == "test":
raise ValueError("Split 'test' has only no calibration settings, please set `calibration=None`.")
else:
if split != "test":
raise ValueError(
f"Split '{split}' has calibration settings, however None was provided as an argument."
f"\nSetting calibration to 'perfect' for split '{split}'. Available calibration settings are: 'perfect', 'imperfect', 'both'.",
)
if download:
self._download_dataset(root)
root = Path(root) / "Middlebury2014"
if not os.path.exists(root / split):
raise FileNotFoundError(f"The {split} directory was not found in the provided root directory")
split_scenes = self.splits[split]
# check that the provided root folder contains the scene splits
if not any(
# using startswith to account for perfect / imperfect calibrartion
scene.startswith(s)
for scene in os.listdir(root / split)
for s in split_scenes
):
raise FileNotFoundError(f"Provided root folder does not contain any scenes from the {split} split.")
calibrartion_suffixes = {
None: [""],
"perfect": ["-perfect"],
"imperfect": ["-imperfect"],
"both": ["-perfect", "-imperfect"],
}[calibration]
for calibration_suffix in calibrartion_suffixes:
scene_pattern = "*" + calibration_suffix
left_img_pattern = str(root / split / scene_pattern / "im0.png")
right_img_pattern = str(root / split / scene_pattern / "im1.png")
self._images += self._scan_pairs(left_img_pattern, right_img_pattern)
if split == "test":
self._disparities = list((None, None) for _ in self._images)
else:
left_dispartity_pattern = str(root / split / scene_pattern / "disp0.pfm")
right_dispartity_pattern = str(root / split / scene_pattern / "disp1.pfm")
self._disparities += self._scan_pairs(left_dispartity_pattern, right_dispartity_pattern)
self.use_ambient_views = use_ambient_views
def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
"""
Function that reads either the original right image or an augmented view when ``use_ambient_views`` is True.
When ``use_ambient_views`` is True, the dataset will return at random one of ``[im1.png, im1E.png, im1L.png]``
as the right image.
"""
ambient_file_paths: List[Union[str, Path]] # make mypy happy
if not isinstance(file_path, Path):
file_path = Path(file_path)
if file_path.name == "im1.png" and self.use_ambient_views:
base_path = file_path.parent
# initialize sampleable container
ambient_file_paths = list(base_path / view_name for view_name in ["im1E.png", "im1L.png"])
# double check that we're not going to try to read from an invalid file path
ambient_file_paths = list(filter(lambda p: os.path.exists(p), ambient_file_paths))
# keep the original image as an option as well for uniform sampling between base views
ambient_file_paths.append(file_path)
file_path = random.choice(ambient_file_paths) # type: ignore
return super()._read_img(file_path)
def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]:
# test split has not disparity maps
if file_path is None:
return None, None
disparity_map = _read_pfm_file(file_path)
disparity_map = np.abs(disparity_map) # ensure that the disparity is positive
disparity_map[disparity_map == np.inf] = 0 # remove infinite disparities
valid_mask = (disparity_map > 0).squeeze(0) # mask out invalid disparities
return disparity_map, valid_mask
def _download_dataset(self, root: Union[str, Path]) -> None:
base_url = "https://vision.middlebury.edu/stereo/data/scenes2014/zip"
# train and additional splits have 2 different calibration settings
root = Path(root) / "Middlebury2014"
split_name = self.split
if split_name != "test":
for split_scene in self.splits[split_name]:
split_root = root / split_name
for calibration in ["perfect", "imperfect"]:
scene_name = f"{split_scene}-{calibration}"
scene_url = f"{base_url}/{scene_name}.zip"
# download the scene only if it doesn't exist
if not (split_root / scene_name).exists():
download_and_extract_archive(
url=scene_url,
filename=f"{scene_name}.zip",
download_root=str(split_root),
remove_finished=True,
)
else:
os.makedirs(root / "test")
if any(s not in os.listdir(root / "test") for s in self.splits["test"]):
# test split is downloaded from a different location
test_set_url = "https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-F.zip"
# the unzip is going to produce a directory MiddEval3 with two subdirectories trainingF and testF
# we want to move the contents from testF into the directory
download_and_extract_archive(url=test_set_url, download_root=str(root), remove_finished=True)
for scene_dir, scene_names, _ in os.walk(str(root / "MiddEval3/testF")):
for scene in scene_names:
scene_dst_dir = root / "test"
scene_src_dir = Path(scene_dir) / scene
os.makedirs(scene_dst_dir, exist_ok=True)
shutil.move(str(scene_src_dir), str(scene_dst_dir))
# cleanup MiddEval3 directory
shutil.rmtree(str(root / "MiddEval3"))
[docs] def __getitem__(self, index: int) -> T2:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` for `split=test`.
"""
return cast(T2, super().__getitem__(index))
[docs]class CREStereo(StereoMatchingDataset):
"""Synthetic dataset used in training the `CREStereo <https://arxiv.org/pdf/2203.11483.pdf>`_ architecture.
Dataset details on the official paper `repo <https://github.com/megvii-research/CREStereo>`_.
The dataset is expected to have the following structure: ::
root
CREStereo
tree
img1_left.jpg
img1_right.jpg
img1_left.disp.jpg
img1_right.disp.jpg
img2_left.jpg
img2_right.jpg
img2_left.disp.jpg
img2_right.disp.jpg
...
shapenet
img1_left.jpg
img1_right.jpg
img1_left.disp.jpg
img1_right.disp.jpg
...
reflective
img1_left.jpg
img1_right.jpg
img1_left.disp.jpg
img1_right.disp.jpg
...
hole
img1_left.jpg
img1_right.jpg
img1_left.disp.jpg
img1_right.disp.jpg
...
Args:
root (str): Root directory of the dataset.
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
_has_built_in_disparity_mask = True
def __init__(
self,
root: Union[str, Path],
transforms: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms)
root = Path(root) / "CREStereo"
dirs = ["shapenet", "reflective", "tree", "hole"]
for s in dirs:
left_image_pattern = str(root / s / "*_left.jpg")
right_image_pattern = str(root / s / "*_right.jpg")
imgs = self._scan_pairs(left_image_pattern, right_image_pattern)
self._images += imgs
left_disparity_pattern = str(root / s / "*_left.disp.png")
right_disparity_pattern = str(root / s / "*_right.disp.png")
disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
self._disparities += disparities
def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]:
disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
# unsqueeze the disparity map into (C, H, W) format
disparity_map = disparity_map[None, :, :] / 32.0
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
generate a valid mask.
"""
return cast(T1, super().__getitem__(index))
[docs]class FallingThingsStereo(StereoMatchingDataset):
"""`FallingThings <https://research.nvidia.com/publication/2018-06_falling-things-synthetic-dataset-3d-object-detection-and-pose-estimation>`_ dataset.
The dataset is expected to have the following structure: ::
root
FallingThings
single
dir1
scene1
_object_settings.json
_camera_settings.json
image1.left.depth.png
image1.right.depth.png
image1.left.jpg
image1.right.jpg
image2.left.depth.png
image2.right.depth.png
image2.left.jpg
image2.right
...
scene2
...
mixed
scene1
_object_settings.json
_camera_settings.json
image1.left.depth.png
image1.right.depth.png
image1.left.jpg
image1.right.jpg
image2.left.depth.png
image2.right.depth.png
image2.left.jpg
image2.right
...
scene2
...
Args:
root (str or ``pathlib.Path``): Root directory where FallingThings is located.
variant (string): Which variant to use. Either "single", "mixed", or "both".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
def __init__(self, root: Union[str, Path], variant: str = "single", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
root = Path(root) / "FallingThings"
verify_str_arg(variant, "variant", valid_values=("single", "mixed", "both"))
variants = {
"single": ["single"],
"mixed": ["mixed"],
"both": ["single", "mixed"],
}[variant]
split_prefix = {
"single": Path("*") / "*",
"mixed": Path("*"),
}
for s in variants:
left_img_pattern = str(root / s / split_prefix[s] / "*.left.jpg")
right_img_pattern = str(root / s / split_prefix[s] / "*.right.jpg")
self._images += self._scan_pairs(left_img_pattern, right_img_pattern)
left_disparity_pattern = str(root / s / split_prefix[s] / "*.left.depth.png")
right_disparity_pattern = str(root / s / split_prefix[s] / "*.right.depth.png")
self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]:
# (H, W) image
depth = np.asarray(Image.open(file_path))
# as per https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
# in order to extract disparity from depth maps
camera_settings_path = Path(file_path).parent / "_camera_settings.json"
with open(camera_settings_path, "r") as f:
# inverse of depth-from-disparity equation: depth = (baseline * focal) / (disparity * pixel_constant)
intrinsics = json.load(f)
focal = intrinsics["camera_settings"][0]["intrinsic_settings"]["fx"]
baseline, pixel_constant = 6, 100 # pixel constant is inverted
disparity_map = (baseline * focal * pixel_constant) / depth.astype(np.float32)
# unsqueeze disparity to (C, H, W)
disparity_map = disparity_map[None, :, :]
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
If a ``valid_mask`` is generated within the ``transforms`` parameter,
a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
"""
return cast(T1, super().__getitem__(index))
[docs]class SceneFlowStereo(StereoMatchingDataset):
"""Dataset interface for `Scene Flow <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ datasets.
This interface provides access to the `FlyingThings3D, `Monkaa` and `Driving` datasets.
The dataset is expected to have the following structure: ::
root
SceneFlow
Monkaa
frames_cleanpass
scene1
left
img1.png
img2.png
right
img1.png
img2.png
scene2
left
img1.png
img2.png
right
img1.png
img2.png
frames_finalpass
scene1
left
img1.png
img2.png
right
img1.png
img2.png
...
...
disparity
scene1
left
img1.pfm
img2.pfm
right
img1.pfm
img2.pfm
FlyingThings3D
...
...
Args:
root (str or ``pathlib.Path``): Root directory where SceneFlow is located.
variant (string): Which dataset variant to user, "FlyingThings3D" (default), "Monkaa" or "Driving".
pass_name (string): Which pass to use, "clean" (default), "final" or "both".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
def __init__(
self,
root: Union[str, Path],
variant: str = "FlyingThings3D",
pass_name: str = "clean",
transforms: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms)
root = Path(root) / "SceneFlow"
verify_str_arg(variant, "variant", valid_values=("FlyingThings3D", "Driving", "Monkaa"))
verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
passes = {
"clean": ["frames_cleanpass"],
"final": ["frames_finalpass"],
"both": ["frames_cleanpass", "frames_finalpass"],
}[pass_name]
root = root / variant
prefix_directories = {
"Monkaa": Path("*"),
"FlyingThings3D": Path("*") / "*" / "*",
"Driving": Path("*") / "*" / "*",
}
for p in passes:
left_image_pattern = str(root / p / prefix_directories[variant] / "left" / "*.png")
right_image_pattern = str(root / p / prefix_directories[variant] / "right" / "*.png")
self._images += self._scan_pairs(left_image_pattern, right_image_pattern)
left_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "left" / "*.pfm")
right_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "right" / "*.pfm")
self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]:
disparity_map = _read_pfm_file(file_path)
disparity_map = np.abs(disparity_map) # ensure that the disparity is positive
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
If a ``valid_mask`` is generated within the ``transforms`` parameter,
a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
"""
return cast(T1, super().__getitem__(index))
[docs]class SintelStereo(StereoMatchingDataset):
"""Sintel `Stereo Dataset <http://sintel.is.tue.mpg.de/stereo>`_.
The dataset is expected to have the following structure: ::
root
Sintel
training
final_left
scene1
img1.png
img2.png
...
...
final_right
scene2
img1.png
img2.png
...
...
disparities
scene1
img1.png
img2.png
...
...
occlusions
scene1
img1.png
img2.png
...
...
outofframe
scene1
img1.png
img2.png
...
...
Args:
root (str or ``pathlib.Path``): Root directory where Sintel Stereo is located.
pass_name (string): The name of the pass to use, either "final", "clean" or "both".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
_has_built_in_disparity_mask = True
def __init__(self, root: Union[str, Path], pass_name: str = "final", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
verify_str_arg(pass_name, "pass_name", valid_values=("final", "clean", "both"))
root = Path(root) / "Sintel"
pass_names = {
"final": ["final"],
"clean": ["clean"],
"both": ["final", "clean"],
}[pass_name]
for p in pass_names:
left_img_pattern = str(root / "training" / f"{p}_left" / "*" / "*.png")
right_img_pattern = str(root / "training" / f"{p}_right" / "*" / "*.png")
self._images += self._scan_pairs(left_img_pattern, right_img_pattern)
disparity_pattern = str(root / "training" / "disparities" / "*" / "*.png")
self._disparities += self._scan_pairs(disparity_pattern, None)
def _get_occlussion_mask_paths(self, file_path: str) -> Tuple[str, str]:
# helper function to get the occlusion mask paths
# a path will look like .../.../.../training/disparities/scene1/img1.png
# we want to get something like .../.../.../training/occlusions/scene1/img1.png
fpath = Path(file_path)
basename = fpath.name
scenedir = fpath.parent
# the parent of the scenedir is actually the disparity dir
sampledir = scenedir.parent.parent
occlusion_path = str(sampledir / "occlusions" / scenedir.name / basename)
outofframe_path = str(sampledir / "outofframe" / scenedir.name / basename)
if not os.path.exists(occlusion_path):
raise FileNotFoundError(f"Occlusion mask {occlusion_path} does not exist")
if not os.path.exists(outofframe_path):
raise FileNotFoundError(f"Out of frame mask {outofframe_path} does not exist")
return occlusion_path, outofframe_path
def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]:
if file_path is None:
return None, None
# disparity decoding as per Sintel instructions in the README provided with the dataset
disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
r, g, b = np.split(disparity_map, 3, axis=-1)
disparity_map = r * 4 + g / (2**6) + b / (2**14)
# reshape into (C, H, W) format
disparity_map = np.transpose(disparity_map, (2, 0, 1))
# find the appropriate file paths
occlued_mask_path, out_of_frame_mask_path = self._get_occlussion_mask_paths(file_path)
# occlusion masks
valid_mask = np.asarray(Image.open(occlued_mask_path)) == 0
# out of frame masks
off_mask = np.asarray(Image.open(out_of_frame_mask_path)) == 0
# combine the masks together
valid_mask = np.logical_and(off_mask, valid_mask)
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T2:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images whilst
the valid_mask is a numpy array of shape (H, W).
"""
return cast(T2, super().__getitem__(index))
[docs]class InStereo2k(StereoMatchingDataset):
"""`InStereo2k <https://github.com/YuhuaXu/StereoDataset>`_ dataset.
The dataset is expected to have the following structure: ::
root
InStereo2k
train
scene1
left.png
right.png
left_disp.png
right_disp.png
...
scene2
...
test
scene1
left.png
right.png
left_disp.png
right_disp.png
...
scene2
...
Args:
root (str or ``pathlib.Path``): Root directory where InStereo2k is located.
split (string): Either "train" or "test".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
def __init__(self, root: Union[str, Path], split: str = "train", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
root = Path(root) / "InStereo2k" / split
verify_str_arg(split, "split", valid_values=("train", "test"))
left_img_pattern = str(root / "*" / "left.png")
right_img_pattern = str(root / "*" / "right.png")
self._images = self._scan_pairs(left_img_pattern, right_img_pattern)
left_disparity_pattern = str(root / "*" / "left_disp.png")
right_disparity_pattern = str(root / "*" / "right_disp.png")
self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]:
disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
# unsqueeze disparity to (C, H, W)
disparity_map = disparity_map[None, :, :] / 1024.0
valid_mask = None
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
If a ``valid_mask`` is generated within the ``transforms`` parameter,
a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
"""
return cast(T1, super().__getitem__(index))
[docs]class ETH3DStereo(StereoMatchingDataset):
"""ETH3D `Low-Res Two-View <https://www.eth3d.net/datasets>`_ dataset.
The dataset is expected to have the following structure: ::
root
ETH3D
two_view_training
scene1
im1.png
im0.png
images.txt
cameras.txt
calib.txt
scene2
im1.png
im0.png
images.txt
cameras.txt
calib.txt
...
two_view_training_gt
scene1
disp0GT.pfm
mask0nocc.png
scene2
disp0GT.pfm
mask0nocc.png
...
two_view_testing
scene1
im1.png
im0.png
images.txt
cameras.txt
calib.txt
scene2
im1.png
im0.png
images.txt
cameras.txt
calib.txt
...
Args:
root (str or ``pathlib.Path``): Root directory of the ETH3D Dataset.
split (string, optional): The dataset split of scenes, either "train" (default) or "test".
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
"""
_has_built_in_disparity_mask = True
def __init__(self, root: Union[str, Path], split: str = "train", transforms: Optional[Callable] = None) -> None:
super().__init__(root, transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "ETH3D"
img_dir = "two_view_training" if split == "train" else "two_view_test"
anot_dir = "two_view_training_gt"
left_img_pattern = str(root / img_dir / "*" / "im0.png")
right_img_pattern = str(root / img_dir / "*" / "im1.png")
self._images = self._scan_pairs(left_img_pattern, right_img_pattern)
if split == "test":
self._disparities = list((None, None) for _ in self._images)
else:
disparity_pattern = str(root / anot_dir / "*" / "disp0GT.pfm")
self._disparities = self._scan_pairs(disparity_pattern, None)
def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]:
# test split has no disparity maps
if file_path is None:
return None, None
disparity_map = _read_pfm_file(file_path)
disparity_map = np.abs(disparity_map) # ensure that the disparity is positive
mask_path = Path(file_path).parent / "mask0nocc.png"
valid_mask = Image.open(mask_path)
valid_mask = np.asarray(valid_mask).astype(bool)
return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T2:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
generate a valid mask.
Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
"""
return cast(T2, super().__getitem__(index))