[docs]@torch.no_grad()defmake_grid(tensor:Union[torch.Tensor,List[torch.Tensor]],nrow:int=8,padding:int=2,normalize:bool=False,value_range:Optional[Tuple[int,int]]=None,scale_each:bool=False,pad_value:int=0,**kwargs)->torch.Tensor:""" Make a grid of images. Args: tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size. nrow (int, optional): Number of images displayed in each row of the grid. The final grid size is ``(B / nrow, nrow)``. Default: ``8``. padding (int, optional): amount of padding. Default: ``2``. normalize (bool, optional): If True, shift the image to the range (0, 1), by the min and max values specified by ``value_range``. Default: ``False``. value_range (tuple, optional): tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor. scale_each (bool, optional): If ``True``, scale each image in the batch of images separately rather than the (min, max) over all images. Default: ``False``. pad_value (float, optional): Value for the padded pixels. Default: ``0``. Returns: grid (Tensor): the tensor containing grid of images. """ifnot(torch.is_tensor(tensor)or(isinstance(tensor,list)andall(torch.is_tensor(t)fortintensor))):raiseTypeError(f'tensor or list of tensors expected, got {type(tensor)}')if"range"inkwargs.keys():warning="range will be deprecated, please use value_range instead."warnings.warn(warning)value_range=kwargs["range"]# if list of tensors, convert to a 4D mini-batch Tensorifisinstance(tensor,list):tensor=torch.stack(tensor,dim=0)iftensor.dim()==2:# single image H x Wtensor=tensor.unsqueeze(0)iftensor.dim()==3:# single imageiftensor.size(0)==1:# if single-channel, convert to 3-channeltensor=torch.cat((tensor,tensor,tensor),0)tensor=tensor.unsqueeze(0)iftensor.dim()==4andtensor.size(1)==1:# single-channel imagestensor=torch.cat((tensor,tensor,tensor),1)ifnormalizeisTrue:tensor=tensor.clone()# avoid modifying tensor in-placeifvalue_rangeisnotNone:assertisinstance(value_range,tuple), \
"value_range has to be a tuple (min, max) if specified. min and max are numbers"defnorm_ip(img,low,high):img.clamp_(min=low,max=high)img.sub_(low).div_(max(high-low,1e-5))defnorm_range(t,value_range):ifvalue_rangeisnotNone:norm_ip(t,value_range[0],value_range[1])else:norm_ip(t,float(t.min()),float(t.max()))ifscale_eachisTrue:fortintensor:# loop over mini-batch dimensionnorm_range(t,value_range)else:norm_range(tensor,value_range)iftensor.size(0)==1:returntensor.squeeze(0)# make the mini-batch of images into a gridnmaps=tensor.size(0)xmaps=min(nrow,nmaps)ymaps=int(math.ceil(float(nmaps)/xmaps))height,width=int(tensor.size(2)+padding),int(tensor.size(3)+padding)num_channels=tensor.size(1)grid=tensor.new_full((num_channels,height*ymaps+padding,width*xmaps+padding),pad_value)k=0foryinrange(ymaps):forxinrange(xmaps):ifk>=nmaps:break# Tensor.copy_() is a valid method but seems to be missing from the stubs# https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_grid.narrow(1,y*height+padding,height-padding).narrow(# type: ignore[attr-defined]2,x*width+padding,width-padding).copy_(tensor[k])k=k+1returngrid
[docs]@torch.no_grad()defsave_image(tensor:Union[torch.Tensor,List[torch.Tensor]],fp:Union[Text,pathlib.Path,BinaryIO],format:Optional[str]=None,**kwargs)->None:""" Save a given Tensor into an image file. Args: tensor (Tensor or list): Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling ``make_grid``. fp (string or file object): A filename or a file object format(Optional): If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. **kwargs: Other arguments are documented in ``make_grid``. """grid=make_grid(tensor,**kwargs)# Add 0.5 after unnormalizing to [0, 255] to round to nearest integerndarr=grid.mul(255).add_(0.5).clamp_(0,255).permute(1,2,0).to('cpu',torch.uint8).numpy()im=Image.fromarray(ndarr)im.save(fp,format=format)
[docs]@torch.no_grad()defdraw_bounding_boxes(image:torch.Tensor,boxes:torch.Tensor,labels:Optional[List[str]]=None,colors:Optional[Union[List[Union[str,Tuple[int,int,int]]],str,Tuple[int,int,int]]]=None,fill:Optional[bool]=False,width:int=1,font:Optional[str]=None,font_size:int=10)->torch.Tensor:""" Draws bounding boxes on given image. The values of the input image should be uint8 between 0 and 255. If fill is True, Resulting Tensor should be saved as PNG image. Args: image (Tensor): Tensor of shape (C x H x W) and dtype uint8. boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and `0 <= ymin < ymax < H`. labels (List[str]): List containing the labels of bounding boxes. colors (Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]): List containing the colors or a single color for all of the bounding boxes. The colors can be represented as `str` or `Tuple[int, int, int]`. fill (bool): If `True` fills the bounding box with specified color. width (int): Width of bounding box. font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`, `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS. font_size (int): The requested font size in points. Returns: img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted. """ifnotisinstance(image,torch.Tensor):raiseTypeError(f"Tensor expected, got {type(image)}")elifimage.dtype!=torch.uint8:raiseValueError(f"Tensor uint8 expected, got {image.dtype}")elifimage.dim()!=3:raiseValueError("Pass individual images, not batches")elifimage.size(0)notin{1,3}:raiseValueError("Only grayscale and RGB images are supported")ifimage.size(0)==1:image=torch.tile(image,(3,1,1))ndarr=image.permute(1,2,0).numpy()img_to_draw=Image.fromarray(ndarr)img_boxes=boxes.to(torch.int64).tolist()iffill:draw=ImageDraw.Draw(img_to_draw,"RGBA")else:draw=ImageDraw.Draw(img_to_draw)txt_font=ImageFont.load_default()iffontisNoneelseImageFont.truetype(font=font,size=font_size)fori,bboxinenumerate(img_boxes):ifcolorsisNone:color=Noneelifisinstance(colors,list):color=colors[i]else:color=colorsiffill:ifcolorisNone:fill_color=(255,255,255,100)elifisinstance(color,str):# This will automatically raise Error if rgb cannot be parsed.fill_color=ImageColor.getrgb(color)+(100,)elifisinstance(color,tuple):fill_color=color+(100,)draw.rectangle(bbox,width=width,outline=color,fill=fill_color)else:draw.rectangle(bbox,width=width,outline=color)iflabelsisnotNone:margin=width+1draw.text((bbox[0]+margin,bbox[1]+margin),labels[i],fill=color,font=txt_font)returntorch.from_numpy(np.array(img_to_draw)).permute(2,0,1).to(dtype=torch.uint8)
[docs]@torch.no_grad()defdraw_segmentation_masks(image:torch.Tensor,masks:torch.Tensor,alpha:float=0.8,colors:Optional[List[Union[str,Tuple[int,int,int]]]]=None,)->torch.Tensor:""" Draws segmentation masks on given RGB image. The values of the input image should be uint8 between 0 and 255. Args: image (Tensor): Tensor of shape (3, H, W) and dtype uint8. masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool. alpha (float): Float number between 0 and 1 denoting the transparency of the masks. 0 means full transparency, 1 means no transparency. colors (list or None): List containing the colors of the masks. The colors can be represented as PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``. When ``masks`` has a single entry of shape (H, W), you can pass a single color instead of a list with one element. By default, random colors are generated for each mask. Returns: img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top. """ifnotisinstance(image,torch.Tensor):raiseTypeError(f"The image must be a tensor, got {type(image)}")elifimage.dtype!=torch.uint8:raiseValueError(f"The image dtype must be uint8, got {image.dtype}")elifimage.dim()!=3:raiseValueError("Pass individual images, not batches")elifimage.size()[0]!=3:raiseValueError("Pass an RGB image. Other Image formats are not supported")ifmasks.ndim==2:masks=masks[None,:,:]ifmasks.ndim!=3:raiseValueError("masks must be of shape (H, W) or (batch_size, H, W)")ifmasks.dtype!=torch.bool:raiseValueError(f"The masks must be of dtype bool. Got {masks.dtype}")ifmasks.shape[-2:]!=image.shape[-2:]:raiseValueError("The image and the masks must have the same height and width")num_masks=masks.size()[0]ifcolorsisnotNoneandnum_masks>len(colors):raiseValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")ifcolorsisNone:colors=_generate_color_palette(num_masks)ifnotisinstance(colors,list):colors=[colors]ifnotisinstance(colors[0],(tuple,str)):raiseValueError("colors must be a tuple or a string, or a list thereof")ifisinstance(colors[0],tuple)andlen(colors[0])!=3:raiseValueError("It seems that you passed a tuple of colors instead of a list of colors")out_dtype=torch.uint8colors_=[]forcolorincolors:ifisinstance(color,str):color=ImageColor.getrgb(color)color=torch.tensor(color,dtype=out_dtype)colors_.append(color)img_to_draw=image.detach().clone()# TODO: There might be a way to vectorize thisformask,colorinzip(masks,colors_):img_to_draw[:,mask]=color[:,None]out=image*(1-alpha)+img_to_draw*alphareturnout.to(out_dtype)
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.