[docs]defroi_align(input:Tensor,boxes:Union[Tensor,List[Tensor]],output_size:BroadcastingList2[int],spatial_scale:float=1.0,sampling_ratio:int=-1,aligned:bool=False,)->Tensor:""" Performs Region of Interest (RoI) Align operator with average pooling, as described in Mask R-CNN. Args: input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element contains ``C`` feature maps of dimensions ``H x W``. If the tensor is quantized, we expect a batch size of ``N == 1``. boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch. output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling is performed, as (height, width). spatial_scale (float): a scaling factor that maps the input coordinates to the box coordinates. Default: 1.0 sampling_ratio (int): number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If > 0, then exactly ``sampling_ratio x sampling_ratio`` sampling points per bin are used. If <= 0, then an adaptive number of grid points are used (computed as ``ceil(roi_width / output_width)``, and likewise for height). Default: -1 aligned (bool): If False, use the legacy implementation. If True, pixel shift the box coordinates it by -0.5 for a better alignment with the two neighboring pixel indices. This version is used in Detectron2 Returns: Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs. """_assert_has_ops()check_roi_boxes_shape(boxes)rois=boxesoutput_size=_pair(output_size)ifnotisinstance(rois,torch.Tensor):rois=convert_boxes_to_roi_format(rois)returntorch.ops.torchvision.roi_align(input,rois,spatial_scale,output_size[0],output_size[1],sampling_ratio,aligned)
[docs]classRoIAlign(nn.Module):""" See :func:`roi_align`. """def__init__(self,output_size:BroadcastingList2[int],spatial_scale:float,sampling_ratio:int,aligned:bool=False,):super(RoIAlign,self).__init__()self.output_size=output_sizeself.spatial_scale=spatial_scaleself.sampling_ratio=sampling_ratioself.aligned=aligneddefforward(self,input:Tensor,rois:Tensor)->Tensor:returnroi_align(input,rois,self.output_size,self.spatial_scale,self.sampling_ratio,self.aligned)def__repr__(self)->str:tmpstr=self.__class__.__name__+'('tmpstr+='output_size='+str(self.output_size)tmpstr+=', spatial_scale='+str(self.spatial_scale)tmpstr+=', sampling_ratio='+str(self.sampling_ratio)tmpstr+=', aligned='+str(self.aligned)tmpstr+=')'returntmpstr
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.