Source code for torchvision.models.detection.ssd
import torch
import torch.nn.functional as F
import warnings
from collections import OrderedDict
from torch import nn, Tensor
from typing import Any, Dict, List, Optional, Tuple
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform
from .. import vgg
from ..._internally_replaced_utils import load_state_dict_from_url
from ...ops import boxes as box_ops
__all__ = ['SSD', 'ssd300_vgg16']
model_urls = {
'ssd300_vgg16_coco': 'https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth',
}
backbone_urls = {
# We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the
# same input standardization method as the paper. Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
'vgg16_features': 'https://download.pytorch.org/models/vgg16_features-amdegroot.pth'
}
def _xavier_init(conv: nn.Module):
for layer in conv.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, 0.0)
class SSDHead(nn.Module):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
super().__init__()
self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
self.regression_head = SSDRegressionHead(in_channels, num_anchors)
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
return {
'bbox_regression': self.regression_head(x),
'cls_logits': self.classification_head(x),
}
class SSDScoringHead(nn.Module):
def __init__(self, module_list: nn.ModuleList, num_columns: int):
super().__init__()
self.module_list = module_list
self.num_columns = num_columns
def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.module_list[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.module_list)
if idx < 0:
idx += num_blocks
i = 0
out = x
for module in self.module_list:
if i == idx:
out = module(x)
i += 1
return out
def forward(self, x: List[Tensor]) -> Tensor:
all_results = []
for i, features in enumerate(x):
results = self._get_result_from_module_list(features, i)
# Permute output from (N, A * K, H, W) to (N, HWA, K).
N, _, H, W = results.shape
results = results.view(N, -1, self.num_columns, H, W)
results = results.permute(0, 3, 4, 1, 2)
results = results.reshape(N, -1, self.num_columns) # Size=(N, HWA, K)
all_results.append(results)
return torch.cat(all_results, dim=1)
class SSDClassificationHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
cls_logits = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
_xavier_init(cls_logits)
super().__init__(cls_logits, num_classes)
class SSDRegressionHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int]):
bbox_reg = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
_xavier_init(bbox_reg)
super().__init__(bbox_reg, 4)
class SSD(nn.Module):
"""
Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Args:
backbone (nn.Module): the network used to compute the features for the model.
It should contain an out_channels attribute with the list of the output channels of
each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
set of feature maps.
size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
to the backbone.
num_classes (int): number of output classes of the model (including the background).
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
image_std (Tuple[float, float, float]): std values used for input normalization.
They are generally the std values of the dataset on which the backbone has been trained on
head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
a classification and regression module.
score_thresh (float): Score threshold used for postprocessing the detections.
nms_thresh (float): NMS threshold used for postprocessing the detections.
detections_per_img (int): Number of best detections to keep after NMS.
iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
considered as positive during training.
topk_candidates (int): Number of best detections to keep before NMS.
positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
proposals used during the training of the classification head. It is used to estimate the negative to
positive ratio.
"""
__annotations__ = {
'box_coder': det_utils.BoxCoder,
'proposal_matcher': det_utils.Matcher,
}
def __init__(self, backbone: nn.Module, anchor_generator: DefaultBoxGenerator,
size: Tuple[int, int], num_classes: int,
image_mean: Optional[List[float]] = None, image_std: Optional[List[float]] = None,
head: Optional[nn.Module] = None,
score_thresh: float = 0.01,
nms_thresh: float = 0.45,
detections_per_img: int = 200,
iou_thresh: float = 0.5,
topk_candidates: int = 400,
positive_fraction: float = 0.25):
super().__init__()
self.backbone = backbone
self.anchor_generator = anchor_generator
self.box_coder = det_utils.BoxCoder(weights=(10., 10., 5., 5.))
if head is None:
if hasattr(backbone, 'out_channels'):
out_channels = backbone.out_channels
else:
out_channels = det_utils.retrieve_out_channels(backbone, size)
assert len(out_channels) == len(anchor_generator.aspect_ratios)
num_anchors = self.anchor_generator.num_anchors_per_location()
head = SSDHead(out_channels, num_anchors, num_classes)
self.head = head
self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
self.transform = GeneralizedRCNNTransform(min(size), max(size), image_mean, image_std,
size_divisible=1, fixed_size=size)
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.topk_candidates = topk_candidates
self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(self, losses: Dict[str, Tensor],
detections: List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
return losses
return detections
def compute_loss(self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor],
matched_idxs: List[Tensor]) -> Dict[str, Tensor]:
bbox_regression = head_outputs['bbox_regression']
cls_logits = head_outputs['cls_logits']
# Match original targets with default boxes
num_foreground = 0
bbox_loss = []
cls_targets = []
for (targets_per_image, bbox_regression_per_image, cls_logits_per_image, anchors_per_image,
matched_idxs_per_image) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
# produce the matching between boxes and targets
foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
num_foreground += foreground_matched_idxs_per_image.numel()
# Calculate regression loss
matched_gt_boxes_per_image = targets_per_image['boxes'][foreground_matched_idxs_per_image]
bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
bbox_loss.append(torch.nn.functional.smooth_l1_loss(
bbox_regression_per_image,
target_regression,
reduction='sum'
))
# Estimate ground truth for class targets
gt_classes_target = torch.zeros((cls_logits_per_image.size(0), ), dtype=targets_per_image['labels'].dtype,
device=targets_per_image['labels'].device)
gt_classes_target[foreground_idxs_per_image] = \
targets_per_image['labels'][foreground_matched_idxs_per_image]
cls_targets.append(gt_classes_target)
bbox_loss = torch.stack(bbox_loss)
cls_targets = torch.stack(cls_targets)
# Calculate classification loss
num_classes = cls_logits.size(-1)
cls_loss = F.cross_entropy(
cls_logits.view(-1, num_classes),
cls_targets.view(-1),
reduction='none'
).view(cls_targets.size())
# Hard Negative Sampling
foreground_idxs = cls_targets > 0
num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
# num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
negative_loss = cls_loss.clone()
negative_loss[foreground_idxs] = -float('inf') # use -inf to detect positive values that creeped in the sample
values, idx = negative_loss.sort(1, descending=True)
# background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
background_idxs = idx.sort(1)[1] < num_negative
N = max(1, num_foreground)
return {
'bbox_regression': bbox_loss.sum() / N,
'classification': (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
}
def forward(self, images: List[Tensor],
targets: Optional[List[Dict[str, Tensor]]] = None) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training and targets is None:
raise ValueError("In training mode, targets should be passed")
if self.training:
assert targets is not None
for target in targets:
boxes = target["boxes"]
if isinstance(boxes, torch.Tensor):
if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
raise ValueError("Expected target boxes to be a tensor"
"of shape [N, 4], got {:}.".format(
boxes.shape))
else:
raise ValueError("Expected target boxes to be of type "
"Tensor, got {:}.".format(type(boxes)))
# get the original image sizes
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
assert len(val) == 2
original_image_sizes.append((val[0], val[1]))
# transform the input
images, targets = self.transform(images, targets)
# Check for degenerate boxes
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
raise ValueError("All bounding boxes should have positive height and width."
" Found invalid box {} for target at index {}."
.format(degen_bb, target_idx))
# get the features from the backbone
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([('0', features)])
features = list(features.values())
# compute the ssd heads outputs using the features
head_outputs = self.head(features)
# create the set of anchors
anchors = self.anchor_generator(images, features)
losses = {}
detections: List[Dict[str, Tensor]] = []
if self.training:
assert targets is not None
matched_idxs = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
if targets_per_image['boxes'].numel() == 0:
matched_idxs.append(torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64,
device=anchors_per_image.device))
continue
match_quality_matrix = box_ops.box_iou(targets_per_image['boxes'], anchors_per_image)
matched_idxs.append(self.proposal_matcher(match_quality_matrix))
losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
else:
detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
return self.eager_outputs(losses, detections)
def postprocess_detections(self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor],
image_shapes: List[Tuple[int, int]]) -> List[Dict[str, Tensor]]:
bbox_regression = head_outputs['bbox_regression']
pred_scores = F.softmax(head_outputs['cls_logits'], dim=-1)
num_classes = pred_scores.size(-1)
device = pred_scores.device
detections: List[Dict[str, Tensor]] = []
for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
boxes = self.box_coder.decode_single(boxes, anchors)
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
image_boxes = []
image_scores = []
image_labels = []
for label in range(1, num_classes):
score = scores[:, label]
keep_idxs = score > self.score_thresh
score = score[keep_idxs]
box = boxes[keep_idxs]
# keep only topk scoring predictions
num_topk = min(self.topk_candidates, score.size(0))
score, idxs = score.topk(num_topk)
box = box[idxs]
image_boxes.append(box)
image_scores.append(score)
image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))
image_boxes = torch.cat(image_boxes, dim=0)
image_scores = torch.cat(image_scores, dim=0)
image_labels = torch.cat(image_labels, dim=0)
# non-maximum suppression
keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
keep = keep[:self.detections_per_img]
detections.append({
'boxes': image_boxes[keep],
'scores': image_scores[keep],
'labels': image_labels[keep],
})
return detections
class SSDFeatureExtractorVGG(nn.Module):
def __init__(self, backbone: nn.Module, highres: bool):
super().__init__()
_, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))
# Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
backbone[maxpool3_pos].ceil_mode = True
# parameters used for L2 regularization + rescaling
self.scale_weight = nn.Parameter(torch.ones(512) * 20)
# Multiple Feature maps - page 4, Fig 2 of SSD paper
self.features = nn.Sequential(
*backbone[:maxpool4_pos] # until conv4_3
)
# SSD300 case - page 4, Fig 2 of SSD paper
extra = nn.ModuleList([
nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2), # conv8_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(512, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), # conv9_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv10_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv11_2
nn.ReLU(inplace=True),
)
])
if highres:
# Additional layers for the SSD512 case. See page 11, footernote 5.
extra.append(nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=4), # conv12_2
nn.ReLU(inplace=True),
))
_xavier_init(extra)
fc = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False), # add modified maxpool5
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6), # FC6 with atrous
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1), # FC7
nn.ReLU(inplace=True)
)
_xavier_init(fc)
extra.insert(0, nn.Sequential(
*backbone[maxpool4_pos:-1], # until conv5_3, skip maxpool5
fc,
))
self.extra = extra
def forward(self, x: Tensor) -> Dict[str, Tensor]:
# L2 regularization + Rescaling of 1st block's feature map
x = self.features(x)
rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
output = [rescaled]
# Calculating Feature maps for the rest blocks
for block in self.extra:
x = block(x)
output.append(x)
return OrderedDict([(str(i), v) for i, v in enumerate(output)])
def _vgg_extractor(backbone_name: str, highres: bool, progress: bool, pretrained: bool, trainable_layers: int):
if backbone_name in backbone_urls:
# Use custom backbones more appropriate for SSD
arch = backbone_name.split('_')[0]
backbone = vgg.__dict__[arch](pretrained=False, progress=progress).features
if pretrained:
state_dict = load_state_dict_from_url(backbone_urls[backbone_name], progress=progress)
backbone.load_state_dict(state_dict)
else:
# Use standard backbones from TorchVision
backbone = vgg.__dict__[backbone_name](pretrained=pretrained, progress=progress).features
# Gather the indices of maxpools. These are the locations of output blocks.
stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
num_stages = len(stage_indices)
# find the index of the layer from which we wont freeze
assert 0 <= trainable_layers <= num_stages
freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
return SSDFeatureExtractorVGG(backbone, highres)
[docs]def ssd300_vgg16(pretrained: bool = False, progress: bool = True, num_classes: int = 91,
pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs: Any):
"""Constructs an SSD model with input size 300x300 and a VGG16 backbone.
Reference: `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending if it is in training or evaluation mode.
During training, the model expects both the input tensors, as well as a targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Example:
>>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True)
>>> model.eval()
>>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
pretrained (bool): If True, returns a model pre-trained on COCO train2017
progress (bool): If True, displays a progress bar of the download to stderr
num_classes (int): number of output classes of the model (including the background)
pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
"""
if "size" in kwargs:
warnings.warn("The size of the model is already fixed; ignoring the argument.")
trainable_backbone_layers = _validate_trainable_layers(
pretrained or pretrained_backbone, trainable_backbone_layers, 5, 4)
if pretrained:
# no need to download the backbone if pretrained is set
pretrained_backbone = False
backbone = _vgg_extractor("vgg16_features", False, progress, pretrained_backbone, trainable_backbone_layers)
anchor_generator = DefaultBoxGenerator([[2], [2, 3], [2, 3], [2, 3], [2], [2]],
scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
steps=[8, 16, 32, 64, 100, 300])
defaults = {
# Rescale the input in a way compatible to the backbone
"image_mean": [0.48235, 0.45882, 0.40784],
"image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0], # undo the 0-1 scaling of toTensor
}
kwargs = {**defaults, **kwargs}
model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
if pretrained:
weights_name = 'ssd300_vgg16_coco'
if model_urls.get(weights_name, None) is None:
raise ValueError("No checkpoint is available for model {}".format(weights_name))
state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
model.load_state_dict(state_dict)
return model