Source code for torchvision.datasets.semeion
from PIL import Image
import os
import os.path
import numpy as np
from typing import Any, Callable, Optional, Tuple
from .vision import VisionDataset
from .utils import download_url, check_integrity
[docs]class SEMEION(VisionDataset):
r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``semeion.py`` exists.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data"
filename = "semeion.data"
md5_checksum = 'cb545d371d2ce14ec121470795a77432'
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = True,
) -> None:
super(SEMEION, self).__init__(root, transform=transform,
target_transform=target_transform)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
fp = os.path.join(self.root, self.filename)
data = np.loadtxt(fp)
# convert value to 8 bit unsigned integer
# color (white #255) the pixels
self.data = (data[:, :256] * 255).astype('uint8')
self.data = np.reshape(self.data, (-1, 16, 16))
self.labels = np.nonzero(data[:, 256:])[1]
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], int(self.labels[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img, mode='L')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.data)
def _check_integrity(self) -> bool:
root = self.root
fpath = os.path.join(root, self.filename)
if not check_integrity(fpath, self.md5_checksum):
return False
return True
def download(self) -> None:
if self._check_integrity():
print('Files already downloaded and verified')
return
root = self.root
download_url(self.url, root, self.filename, self.md5_checksum)