instruct_dataset¶
- torchtune.datasets.instruct_dataset(tokenizer: ModelTokenizer, *, source: str, column_map: Optional[Dict[str, str]] = None, train_on_input: bool = False, new_system_prompt: Optional[str] = None, packed: bool = False, **load_dataset_kwargs: Dict[str, Any]) Union[SFTDataset, PackedDataset] [source]¶
Configure a custom dataset with user instruction prompts and model responses.
This builder function can be used to configure a custom instruct dataset directly from the yaml config as an alternative to
SFTDataset
, as it is made to be config friendly.The dataset should follow this format:
| input | output | |-----------------|------------------| | "user prompt" | "model response" |
If your column names are different, you can use the
column_map
parameter to change the expected column names. For example, if your dataset has columns"question"
and"answer"
you can use:column_map = {"input": "question", "output": "answer"}
Masking of the prompt during training is controlled by the
train_on_input
flag, which is set toFalse
by default - Iftrain_on_input
is True, the prompt is used during training and contributes to the loss. - Iftrain_on_input
is False, the prompt is masked out (tokens replaced with -100)- Parameters:
tokenizer (ModelTokenizer) – Tokenizer used by the model that implements the
tokenize_messages
method.source (str) – path to dataset repository on Hugging Face. For local datasets, define source as the data file type (e.g. “json”, “csv”, “text”), pass in the filepath in
data_files
, and setsplit="train"
. See Hugging Face’sload_dataset
for more details.column_map (Optional[Dict[str, str]]) – a mapping to change the expected “input” and “output” column names to the actual column names in the dataset. Keys should be “input” and “output” and values should be the actual column names. Default is None, keeping the default “input” and “output” column names.
train_on_input (bool) – Whether the model is trained on the user prompt or not. Default is False.
new_system_prompt (Optional[str]) – if specified, prepend a system message. This can serve as instructions to guide the model response. Default is None.
packed (bool) – Whether or not to pack the dataset to tokenizer’s
max_seq_len
prior to training. Default is False.**load_dataset_kwargs (Dict[str, Any]) – additional keyword arguments to pass to
load_dataset
, such asdata_files
orsplit
.
Examples:
my_dataset.json [ { "question": "What time is it in London?", "answer": "It is 10:00 AM in London.", }, { ... }, ..., ]
>>> from torchtune.datasets import instruct_dataset >>> dataset = instruct_dataset( ... tokenizer=tokenizer, ... source="json", ... data_files="my_dataset.json", ... column_map={ ... "input": "question", ... "output": "answer", ... }, ... train_on_input=False, ... packed=False, ... split="train", ... ) >>> tokens = dataset[0]["tokens"] >>> tokenizer.decode(tokens) "What time is it in London?It is 10:00 AM in London."
This can also be accomplished via the yaml config:
dataset: _component_: torchtune.datasets.instruct_dataset source: json data_files: my_dataset.json column_map: input: question output: answer train_on_input: False packed: False split: train
- Returns:
- the configured
SFTDataset
or
PackedDataset
ifpacked=True
- the configured
- Return type:
Union[SFTDataset, PackedDataset]
- Raises:
ValueError – If
packed=True
andtokenizer.max_seq_len
is not set.