DeepFusionModel¶
- class torchtune.modules.model_fusion.DeepFusionModel(decoder: TransformerDecoder, encoder: Module, *, decoder_trainable: bool = False, encoder_trainable: bool = False, fusion_trainable: bool = True)[source]¶
DeepFusion is a type of fused model architecture where a pretrained encoder is combined with a pretrained decoder (LLM). This is a popular architecture for multimodal models, with a full overview available in The Evolution of Multimodal Model Architectures.
This module has the same methods and forward signature as
TransformerDecoder
and can be used interchangeably whereTransformerDecoder
is. It combines the encoder with the decoder as a single module for checkpointing and finetuning. It is expected that the encoder and decoder are already defined with any extra learnablefusion_params
: learnable parameters to help adapt the pre-trained encoder to the pre-trained decoder.Example
>>> # decoder is a TransformerDecoder (e.g. llama3_8b) with fused cross attention layers >>> embed = FusionEmbedding(...) >>> layer = FusionLayer( ... layer=TransformerSelfAttentionLayer(...), ... fusion_layer=TransformerCrossAttentionLayer(...), ... ) >>> decoder = TransformerDecoder(tok_embeddings=embed, layers=layer, num_layers=32, ...) >>> >>> # encoder is pre-trained encoder (e.g. clip_vit_224) with an added projection head >>> projection_head = FeedForward(...) >>> register_fusion_module(projection_head)) >>> encoder = nn.Sequential(clip_vit_224(), projection_head) >>> >>> # DeepFusionModel combines the encoder and decoder >>> model = DeepFusionModel(decoder, encoder) >>> >>> # Load full fused checkpoints (e.g. a Flamingo checkpoint) >>> model.load_state_dict(...) >>> >>> # Or load pretrained individual models (fusion_params are not loaded) >>> model.encoder.load_state_dict(..., strict=False) >>> model.decoder.load_state_dict(..., strict=False) >>> >>> # Forward pass >>> output = model(tokens, mask, encoder_input, encoder_mask, input_pos)
- Parameters:
decoder (TransformerDecoder) – decoder module
encoder (nn.Module) – encoder module
decoder_trainable (bool) – whether to train or freeze the decoder. Default is False.
encoder_trainable (bool) – whether to train or freeze the encoder. Default is False.
fusion_trainable (bool) – whether to train the fusion parameters. Default is True.
- caches_are_enabled() bool [source]¶
Checks if the key value caches are enabled. Once KV-caches have been setup, the relevant attention modules will be “enabled” and all forward passes will update the caches. This behaviour can be disabled without altering the state of the KV-caches by “disabling” the KV-caches using
disable_kv_cache()
, upon whichcaches_are_enabled
would return False.
- caches_are_setup() bool [source]¶
Check if the key value caches are setup. This means
setup_caches
has been called, and the relevant attention modules in the model have created theirKVCache
.
- forward(tokens: Tensor, *, mask: Optional[Tensor] = None, encoder_input: Optional[Dict] = None, encoder_mask: Optional[Tensor] = None, input_pos: Optional[Tensor] = None) Union[Tensor, List[Tensor]] [source]¶
- Parameters:
tokens (torch.Tensor) – input tensor with shape
[b x s]
mask (Optional[torch.Tensor]) – Optional boolean tensor which contains the attention mask with shape
[b x s x s]
. This is applied after the query-key multiplication and before the softmax. A value of True in row i and column j means token i attends to token j. A value of False means token i does not attend to token j. If no mask is specified, a causal mask is used by default. Default is None.encoder_input (Optional[Dict]) – Optional input for the encoder.
encoder_mask (Optional[torch.Tensor]) – Boolean tensor defining a relational matrix between tokens and encoder embeddings. A True value at position i,j means token i can attend to embedding j in the decoder. Mask has shape
[b x s x s_e]
. Default is None.input_pos (Optional[torch.Tensor]) – Optional tensor which contains the position ids of each token. During training, this is used to indicate the positions of each token relative to its sample when packed, shape
[b x s]
. During inference, this indicates the position of the current token. If none, assume the index of the token is its position id. Default is None.
Note: At the very first step of inference, when the model is provided with a prompt,
input_pos
would contain the positions of all of the tokens in the prompt (eg:torch.arange(prompt_length)
). This is because we will need to compute the KV values for each position.- Returns:
output tensor with shape
[b x s x v]
or a list of layer output tensors defined byoutput_hidden_states
with the final output tensor appended to the list.- Return type:
Tensor
- Notation used for tensor shapes:
b: batch size
s: token sequence length
s_e: encoder sequence length
v: vocab size
d: token embed dim
d_e: encoder embed dim
m_s: max seq len
- reset_caches()[source]¶
Resets KV-cache buffers on relevant attention modules to zero, and reset cache positions to zero, without deleting or reallocating cache tensors.
- set_num_output_chunks(num_output_chunks: int) None [source]¶
Used to save memory in combination with
CEWithChunkedOutputLoss
. This should be called before the first forward pass, in the recipe.
- setup_caches(batch_size: int, dtype: dtype, *, encoder_max_seq_len: int = None, decoder_max_seq_len: int = None)[source]¶
Sets up key-value attention caches for inference for
self.decoder
. For each layer inself.decoder.layers
: -torchtune.modules.TransformerSelfAttentionLayer
will usedecoder_max_seq_len
. -torchtune.modules.TransformerCrossAttentionLayer
will useencoder_max_seq_len
. -torchtune.modules.fusion.FusionLayer
will use bothdecoder_max_seq_len
andencoder_max_seq_len
.