classifier_model
- torchtune.modules.classifier_model(num_classes: int, base_model_path: str, **base_model_kwargs: Dict[str, Any]) Union[TransformerDecoder, Module] [source]
Create a classifier model from a base model by adapting the output layer.
Note
This builder does not support models which apply PEFT to the output layer.
- Parameters:
num_classes (int) – The number of classes for the classifier.
base_model_path (str) – The path to the base model builder, which must return an instance of
TransformerDecoder
, or a model with adecoder
attribute that is an instance ofTransformerDecoder
.**base_model_kwargs (Dict[str, Any]) – Keyword arguments for the base model.
- Returns:
The base model, with the output layer adapted for the number of classes.
- Return type:
Union[TransformerDecoder, nn.Module]
- Raises:
ValueError – If the base model does not have a valid output layer to adapt.
Example
>>> from torchtune.modules import classifier_model >>> model = classifier_model(num_classes=1, base_model_path="torchtune.models.llama3_2.llama3_2_1b") >>> model.output.weight.shape torch.Size([1, 4096])