Shortcuts

lora_qwen2_5_32b_base

torchtune.models.qwen2_5.lora_qwen2_5_32b_base(lora_attn_modules: List[Literal['q_proj', 'k_proj', 'v_proj', 'output_proj']], apply_lora_to_mlp: bool = False, apply_lora_to_output: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False) TransformerDecoder[source]

Builder for creating a Qwen2.5 32B base model with LoRA enabled.

The Qwen2.5 defaults are the same as in qwen2_5_32b_base(), while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.

Parameters:
  • lora_attn_modules (List[LORA_ATTN_MODULES]) – list of which linear layers LoRA should be applied to in each self-attention block. Options are {"q_proj", "k_proj", "v_proj", "output_proj"}.

  • apply_lora_to_mlp (bool) – whether to apply LoRA to the MLP in each transformer layer. Default: False

  • apply_lora_to_output (bool) – whether to apply LoRA to the model’s final output projection. Default: False

  • lora_rank (int) – rank of each low-rank approximation

  • lora_alpha (float) – scaling factor for the low-rank approximation

  • lora_dropout (float) – dropout probability for the low-rank approximation. Default: 0.0

  • quantize_base (bool) – Whether to quantize base model weights

Returns:

Instantiation of Qwen2.5 32B model with LoRA applied

Return type:

TransformerDecoder

Note

The base and instruct versions have slightly different architectures for all Qwen2.5 model sizes except 0.5B and 3B. Make sure to select the correct model builder for the weights.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources