BatchSubSampler¶
- class torchrl.trainers.BatchSubSampler(batch_size: int, sub_traj_len: int = 0, min_sub_traj_len: int = 0)[source]¶
Data subsampler for online RL sota-implementations.
This class subsamples a part of a whole batch of data just collected from the environment.
- Parameters:
batch_size (int) – sub-batch size to collect. The provided batch size must be equal to the total number of items in the output tensordict, which will have size [batch_size // sub_traj_len, sub_traj_len].
sub_traj_len (int, optional) – length of the trajectories that sub-samples must have in online settings. Default is -1 (i.e. takes the full length of the trajectory)
min_sub_traj_len (int, optional) – minimum value of
sub_traj_len
, in case some elements of the batch contain few steps. Default is -1 (i.e. no minimum value)
Examples
>>> td = TensorDict( ... { ... key1: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0), ... key2: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0), ... }, ... [2, 10], ... ) >>> trainer.register_op( ... "process_optim_batch", ... BatchSubSampler(batch_size=batch_size, sub_traj_len=sub_traj_len), ... ) >>> td_out = trainer._process_optim_batch_hook(td) >>> assert td_out.shape == torch.Size([batch_size // sub_traj_len, sub_traj_len])
- register(trainer: Trainer, name: str = 'batch_subsampler')[source]¶
Registers the hook in the trainer at a default location.
- Parameters:
trainer (Trainer) – the trainer where the hook must be registered.
name (str) – the name of the hook.
Note
To register the hook at another location than the default, use
register_op()
.