QMixerLoss¶
- class torchrl.objectives.multiagent.QMixerLoss(*args, **kwargs)[source]¶
The QMixer loss class.
Mixes local agent q values into a global q value according to a mixing network and then uses DQN updates on the global value. This loss is for multi-agent applications. Therefore, it expects the ‘local_value’, ‘action_value’ and ‘action’ keys to have an agent dimension (this is visible in the dafault AcceptedKeys). This dimension will be mixed by the mixer which will compute a ‘global_value’ key, used for a DQN objective. The premade mixers of type
torchrl.modules.models.multiagent.Mixer
will expect the multi-agent dimension to be the penultimate one.- Parameters:
local_value_network (QValueActor or nn.Module) – a local Q value operator.
mixer_network (TensorDictModule or nn.Module) – a mixer network mapping the agents’ local Q values and an optional state to the global Q value. It is suggested to provide a TensorDictModule wrapping a mixer from
torchrl.modules.models.multiagent.Mixer
.
- Keyword Arguments:
loss_function (str, optional) – loss function for the value discrepancy. Can be one of “l1”, “l2” or “smooth_l1”. Defaults to “l2”.
delay_value (bool, optional) – whether to duplicate the value network into a new target value network to create a double DQN. Default is
False
.action_space (str or TensorSpec, optional) – Action space. Must be one of
"one-hot"
,"mult_one_hot"
,"binary"
or"categorical"
, or an instance of the corresponding specs (torchrl.data.OneHot
,torchrl.data.MultiOneHot
,torchrl.data.Binary
ortorchrl.data.Categorical
). If not provided, an attempt to retrieve it from the value network will be made.priority_key (NestedKey, optional) – [Deprecated, use .set_keys(priority_key=priority_key) instead] The key at which priority is assumed to be stored within TensorDicts added to this ReplayBuffer. This is to be used when the sampler is of type
PrioritizedSampler
. Defaults to"td_error"
.
Examples
>>> import torch >>> from torch import nn >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torchrl.modules import QValueModule, SafeSequential >>> from torchrl.modules.models.multiagent import QMixer >>> from torchrl.objectives.multiagent import QMixerLoss >>> n_agents = 4 >>> module = TensorDictModule( ... nn.Linear(10,3), in_keys=[("agents", "observation")], out_keys=[("agents", "action_value")] ... ) >>> value_module = QValueModule( ... action_value_key=("agents", "action_value"), ... out_keys=[ ... ("agents", "action"), ... ("agents", "action_value"), ... ("agents", "chosen_action_value"), ... ], ... action_space="categorical", ... ) >>> qnet = SafeSequential(module, value_module) >>> qmixer = TensorDictModule( ... module=QMixer( ... state_shape=(64, 64, 3), ... mixing_embed_dim=32, ... n_agents=n_agents, ... device="cpu", ... ), ... in_keys=[("agents", "chosen_action_value"), "state"], ... out_keys=["chosen_action_value"], ... ) >>> loss = QMixerLoss(qnet, qmixer, action_space="categorical") >>> td = TensorDict( ... { ... "agents": TensorDict( ... {"observation": torch.zeros(32, n_agents, 10)}, [32, n_agents] ... ), ... "state": torch.zeros(32, 64, 64, 3), ... "next": TensorDict( ... { ... "agents": TensorDict( ... {"observation": torch.zeros(32, n_agents, 10)}, [32, n_agents] ... ), ... "state": torch.zeros(32, 64, 64, 3), ... "reward": torch.zeros(32, 1), ... "done": torch.zeros(32, 1, dtype=torch.bool), ... "terminated": torch.zeros(32, 1, dtype=torch.bool), ... }, ... [32], ... ), ... }, ... [32], ... ) >>> loss(qnet(td)) TensorDict( fields={ loss: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
- forward(tensordict: TensorDictBase = None) TensorDict [source]¶
It is designed to read an input TensorDict and return another tensordict with loss keys named “loss*”.
Splitting the loss in its component can then be used by the trainer to log the various loss values throughout training. Other scalars present in the output tensordict will be logged too.
- Parameters:
tensordict – an input tensordict with the values required to compute the loss.
- Returns:
A new tensordict with no batch dimension containing various loss scalars which will be named “loss*”. It is essential that the losses are returned with this name as they will be read by the trainer before backpropagation.
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]¶
Value-function constructor.
If the non-default value function is wanted, it must be built using this method.
- Parameters:
value_type (ValueEstimators) – A
ValueEstimators
enum type indicating the value function to use. If none is provided, the default stored in thedefault_value_estimator
attribute will be used. The resulting value estimator class will be registered inself.value_type
, allowing future refinements.**hyperparams – hyperparameters to use for the value function. If not provided, the value indicated by
default_value_kwargs()
will be used.
Examples
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)