DiscreteSACLoss¶
- class torchrl.objectives.DiscreteSACLoss(*args, **kwargs)[source]¶
Discrete SAC Loss module.
- Parameters:
actor_network (ProbabilisticActor) – the actor to be trained
qvalue_network (TensorDictModule) – a single Q-value network that will be multiplicated as many times as needed.
action_space (str or TensorSpec) – Action space. Must be one of
"one-hot"
,"mult_one_hot"
,"binary"
or"categorical"
, or an instance of the corresponding specs (torchrl.data.OneHot
,torchrl.data.MultiOneHot
,torchrl.data.Binary
ortorchrl.data.Categorical
).num_actions (int, optional) – number of actions in the action space. To be provided if target_entropy is set to “auto”.
num_qvalue_nets (int, optional) – Number of Q-value networks to be trained. Default is 2.
loss_function (str, optional) – loss function to be used for the Q-value. Can be one of “smooth_l1”, “l2”, “l1”, Default is “smooth_l1”.
alpha_init (float, optional) – initial entropy multiplier. Default is 1.0.
min_alpha (float, optional) – min value of alpha. Default is None (no minimum value).
max_alpha (float, optional) – max value of alpha. Default is None (no maximum value).
fixed_alpha (bool, optional) – whether alpha should be trained to match a target entropy. Default is
False
.target_entropy_weight (float, optional) – weight for the target entropy term.
target_entropy (Union[str, Number], optional) – Target entropy for the stochastic policy. Default is “auto”.
delay_qvalue (bool, optional) – Whether to separate the target Q value networks from the Q value networks used for data collection. Default is
False
.priority_key (str, optional) – [Deprecated, use .set_keys(priority_key=priority_key) instead] Key where to write the priority value for prioritized replay buffers. Default is “td_error”.
separate_losses (bool, optional) – if
True
, shared parameters between policy and critic will only be trained on the policy loss. Defaults toFalse
, i.e., gradients are propagated to shared parameters for both policy and critic losses.reduction (str, optional) – Specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed. Default:"mean"
.
Examples: >>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions import NormalParamExtractor, OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.sac import DiscreteSACLoss >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> module = TensorDictModule(nn.Linear(n_obs, n_act), in_keys=[“observation”], out_keys=[“logits”]) >>> actor = ProbabilisticActor( … module=module, … in_keys=[“logits”], … out_keys=[“action”], … spec=spec, … distribution_class=OneHotCategorical) >>> qvalue = TensorDictModule( … nn.Linear(n_obs, n_act), … in_keys=[“observation”], … out_keys=[“action_value”], … ) >>> loss = DiscreteSACLoss(actor, qvalue, action_space=spec, num_actions=spec.space.n) >>> batch = [2,] >>> action = spec.rand(batch) >>> data = TensorDict({ … “observation”: torch.randn(*batch, n_obs), … “action”: action, … (“next”, “done”): torch.zeros(*batch, 1, dtype=torch.bool), … (“next”, “terminated”): torch.zeros(*batch, 1, dtype=torch.bool), … (“next”, “reward”): torch.randn(*batch, 1), … (“next”, “observation”): torch.randn(*batch, n_obs), … }, batch) >>> loss(data) TensorDict( fields={
alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]), device=None, is_shared=False)
This class is compatible with non-tensordict based modules too and can be used without recurring to any tensordict-related primitive. In this case, the expected keyword arguments are:
["action", "next_reward", "next_done", "next_terminated"]
+ in_keys of the actor and qvalue network. The return value is a tuple of tensors in the following order: ``[“loss_actor”, “loss_qvalue”, “loss_alpha”,“alpha”, “entropy”]``
The output keys can also be filtered using
DiscreteSACLoss.select_out_keys()
method.Examples
>>> import torch >>> from torch import nn >>> from torchrl.data.tensor_specs import OneHot >>> from torchrl.modules.distributions import NormalParamExtractor, OneHotCategorical >>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator >>> from torchrl.modules.tensordict_module.common import SafeModule >>> from torchrl.objectives.sac import DiscreteSACLoss >>> n_act, n_obs = 4, 3 >>> spec = OneHot(n_act) >>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor()) >>> module = SafeModule(net, in_keys=["observation"], out_keys=["logits"]) >>> actor = ProbabilisticActor( ... module=module, ... in_keys=["logits"], ... out_keys=["action"], ... spec=spec, ... distribution_class=OneHotCategorical) >>> class ValueClass(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(n_obs, n_act) ... def forward(self, obs): ... return self.linear(obs) >>> module = ValueClass() >>> qvalue = ValueOperator( ... module=module, ... in_keys=['observation']) >>> loss = DiscreteSACLoss(actor, qvalue, num_actions=actor.spec["action"].space.n) >>> batch = [2, ] >>> action = spec.rand(batch) >>> # filter output keys to "loss_actor", and "loss_qvalue" >>> _ = loss.select_out_keys("loss_actor", "loss_qvalue") >>> loss_actor, loss_qvalue = loss( ... observation=torch.randn(*batch, n_obs), ... action=action, ... next_done=torch.zeros(*batch, 1, dtype=torch.bool), ... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool), ... next_observation=torch.zeros(*batch, n_obs), ... next_reward=torch.randn(*batch, 1)) >>> loss_actor.backward()
- forward(tensordict: TensorDictBase = None) TensorDictBase [source]¶
It is designed to read an input TensorDict and return another tensordict with loss keys named “loss*”.
Splitting the loss in its component can then be used by the trainer to log the various loss values throughout training. Other scalars present in the output tensordict will be logged too.
- Parameters:
tensordict – an input tensordict with the values required to compute the loss.
- Returns:
A new tensordict with no batch dimension containing various loss scalars which will be named “loss*”. It is essential that the losses are returned with this name as they will be read by the trainer before backpropagation.
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[source]¶
Value-function constructor.
If the non-default value function is wanted, it must be built using this method.
- Parameters:
value_type (ValueEstimators) – A
ValueEstimators
enum type indicating the value function to use. If none is provided, the default stored in thedefault_value_estimator
attribute will be used. The resulting value estimator class will be registered inself.value_type
, allowing future refinements.**hyperparams – hyperparameters to use for the value function. If not provided, the value indicated by
default_value_kwargs()
will be used.
Examples
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)