Shortcuts

ActorValueOperator

class torchrl.modules.tensordict_module.ActorValueOperator(*args, **kwargs)[source]

Actor-value operator.

This class wraps together an actor and a value model that share a common observation embedding network:

../../_images/aafig-2229301c32d3e27b4cec9be5284f11e681ba0607.svg

Note

For a similar class that returns an action and a Quality value \(Q(s, a)\) see ActorCriticOperator. For a version without common embeddig refet to ActorCriticWrapper.

To facilitate the workflow, this class comes with a get_policy_operator() and get_value_operator() methods, which will both return a standalone TDModule with the dedicated functionality.

Parameters:
  • common_operator (TensorDictModule) – a common operator that reads observations and produces a hidden variable

  • policy_operator (TensorDictModule) – a policy operator that reads the hidden variable and returns an action

  • value_operator (TensorDictModule) – a value operator, that reads the hidden variable and returns a value

Examples

>>> import torch
>>> from tensordict import TensorDict
>>> from torchrl.modules import ProbabilisticActor, SafeModule
>>> from torchrl.modules import ValueOperator, TanhNormal, ActorValueOperator, NormalParamExtractor
>>> module_hidden = torch.nn.Linear(4, 4)
>>> td_module_hidden = SafeModule(
...    module=module_hidden,
...    in_keys=["observation"],
...    out_keys=["hidden"],
...    )
>>> module_action = TensorDictModule(
...     nn.Sequential(torch.nn.Linear(4, 8), NormalParamExtractor()),
...     in_keys=["hidden"],
...     out_keys=["loc", "scale"],
...     )
>>> td_module_action = ProbabilisticActor(
...    module=module_action,
...    in_keys=["loc", "scale"],
...    out_keys=["action"],
...    distribution_class=TanhNormal,
...    return_log_prob=True,
...    )
>>> module_value = torch.nn.Linear(4, 1)
>>> td_module_value = ValueOperator(
...    module=module_value,
...    in_keys=["hidden"],
...    )
>>> td_module = ActorValueOperator(td_module_hidden, td_module_action, td_module_value)
>>> td = TensorDict({"observation": torch.randn(3, 4)}, [3,])
>>> td_clone = td_module(td.clone())
>>> print(td_clone)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        state_value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)
>>> td_clone = td_module.get_policy_operator()(td.clone())
>>> print(td_clone)  # no value
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)
>>> td_clone = td_module.get_value_operator()(td.clone())
>>> print(td_clone)  # no action
TensorDict(
    fields={
        hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        state_value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)
get_policy_head() SafeSequential[source]

Returns the policy head.

get_policy_operator() SafeSequential[source]

Returns a standalone policy operator that maps an observation to an action.

get_value_head() SafeSequential[source]

Returns the value head.

get_value_operator() SafeSequential[source]

Returns a standalone value network operator that maps an observation to a value estimate.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources