PermuteTransform¶
- class torchrl.envs.transforms.PermuteTransform(dims, in_keys=None, out_keys=None, in_keys_inv=None, out_keys_inv=None)[source]¶
Permutation transform.
Permutes input tensors along the desired dimensions. The permutations must be provided along the feature dimension (not batch dimension).
- Parameters:
dims (list of int) – the permuted order of the dimensions. Must be a reordering of the dims
[-(len(dims)), ..., -1]
.in_keys (list of NestedKeys) – input entries (read).
out_keys (list of NestedKeys) – input entries (write). Defaults to
in_keys
if not provided.in_keys_inv (list of NestedKeys) – input entries (read) during
inv()
calls.out_keys_inv (list of NestedKeys) – input entries (write) during
inv()
calls. Defaults toin_keys_in
if not provided.
Examples
>>> from torchrl.envs.libs.gym import GymEnv >>> base_env = GymEnv("ALE/Pong-v5") >>> base_env.rollout(2) TensorDict( fields={ action: Tensor(shape=torch.Size([2, 6]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([2, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([2, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False) >>> env = TransformedEnv(base_env, PermuteTransform((-1, -3, -2), in_keys=["pixels"])) >>> env.rollout(2) # channels are at the end TensorDict( fields={ action: Tensor(shape=torch.Size([2, 6]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([2, 3, 210, 160]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([2, 3, 210, 160]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False)
- transform_input_spec(input_spec)[source]¶
Transforms the input spec such that the resulting spec matches transform mapping.
- Parameters:
input_spec (TensorSpec) – spec before the transform
- Returns:
expected spec after the transform
- transform_observation_spec(observation_spec: TensorSpec) TensorSpec [source]¶
Transforms the observation spec such that the resulting spec matches transform mapping.
- Parameters:
observation_spec (TensorSpec) – spec before the transform
- Returns:
expected spec after the transform